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Krystyna Czyżewska, Wanda M. Krajewska (redaktor naczelny),
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2. Toute communications est présentée à la séance d’une Commission de la Société
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ou une formule par l’alinéa il faut taper 6 mm ou 2 cm de la marge gauche,

respectivement.
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ON THE NONDEGENERATE JUMPS OF THE ŁOJASIEWICZ
EXPONENT

Summary
The aim of this paper is to give formulas for jumps upwards and downwards of the

Łojasiewicz exponent in nondegenerate deformations of a curve singularity f in terms of
its Newton diagram.

Keywords and phrases: isolated singularity, deformation, jump, nondegeneracy in the
Kouchnirenko sense, Łojasiewicz exponent, Milnor number

1. Introduction

Let f : (Cn, 0)→ (C, 0) be an isolated singularity. We define the number

L0(f) := inf{α ∈ R+ : ∃C>0∃r>0∀‖z‖<r‖∇f(z)‖ ≥ C‖z‖α}

and call it the Łojasiewicz exponent of f. In [Tes77], B. Teissier calculated L0(f)

in terms of polar invariants of the singularity f and proved that the Łojasiewicz
exponent is lower semicontinuous in any µ-constant deformation of the singularity
f. A. Płoski generalized his result and proved that the Łojasiewicz exponent is lower
semicontinuous in any multiplicity-constant deformation of a finite holomorphic map
germ (see [P11]). Teissier also showed that without the µ-constancy assumption the
Łojasiewicz exponent is neither uppern or lower semicontinuous (see [Tes78]). The
“jump phenomena” of the Łojasiewicz exponent were rediscovered by some authors
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(see [MN05]). By the jump downards of L0(f) we mean the minimum non-zero pos-
itive difference between the Łojasiewicz exponent of f and one of its deformations
(fs). We define in analogous way the jump upwards (see Section 3). We give formu-
las for jumps upwards and downwards of the Łojasiewicz exponent in nondegenerate
deformations of a curve singularity f in terms of its Newton diagram and the Farey’s
fractions (see Theorems 4.1, 4.5). We also give some examples showing that a non-
degenerate jump of the Łojasiewicz exponent of f may be different from a jump of
the Łojasiewicz exponent of f or be the same in some cases (see Examples 4.4, 4.3).

2. Preliminaries

2.1. Deformations of singularities

Let f : (Cn, 0) −→ (C, 0) be a non-zero holomorphic function in an open neighbour-
hood of 0 ∈ Cn. We say that f is an isolated singularity if f has an isolated critical
point at the origin i.e. f(0) = 0, ∇f(0) = 0 and ∇f(z) 6= 0 for z 6= 0 near 0 ∈ Cn,
where ∇f = (f ′z1 , . . . , f

′
zn).

We say that a holomorphic function F = F (z, s) : (Cn × C, 0) −→ (C, 0) is a
deformation of f if

1. F (z, 0) = f(z)

2. F (·, s) is an isolated singularity for every s.

We shall write F (z, s) = fs(z).

2.2. The Newton diagram and nondegenerate singularities

We denote

N = {0, 1, 2, . . .}, N+ = N \ {0} and R+ = {x ∈ R : x ≥ 0}.
Let

∑
ν∈Nn aνz

ν be the Taylor expansion of f at 0. We define the set supp f = {ν ∈
Nn : aν 6= 0} and call it the support of f.

We define
Γ+(f) = conv{ν + Rn+ : ν ∈ supp f} ⊂ Rn

and call it the Newton diagram of f . Let u ∈ Rn+ \ {0}. Put
l(u,Γ+(f)) = inf{〈u, v〉 : v ∈ Γ+(f)},

∆(u,Γ+(f)) = {v ∈ Γ+(f) : 〈u, v〉 = l(u,Γ+(f))}.
We say that S ⊂ Rn is a face of Γ+(f) if S = ∆(u,Γ+(f)) for some u ∈ Rn+ \ {0}.
The vector u is called a primitive vector of S. It is easy to see that S is a closed and
convex set and S ⊂ Fr(Γ+(f)), where Fr(A) denotes the boundary of A. One may
check that a face S ⊂ Γ+(f) is compact if and only if there exists a primitive vector
of S which has all coordinates positive. We call the family of all compact faces of
Γ+(f) the Newton boundary of f and denote it by Γ(f). We denote by Γk(f) the
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set of all compact k-dimensional faces of Γ(f), k = 0, . . . , n− 1. For every compact
face S ∈ Γ(f) we define the polynomial

fS =
∑
ν∈S

aνz
ν .

We say that f is nondegenerate on the face S ∈ Γ(f) if the system of equations
∂fS
∂z1

= . . . =
∂fS
∂zn

= 0

has no solution in (C∗)n, where C∗ = C\{0}. We say that f is nondegenerate in the
sense of Kouchnirenko (shortly nondegenerate) if it is nondegenerate on each face of
Γ(f) (see [Ko76]).

We say that f is nearly convenient if the distance of Γ+(f) to every coordinate
axis does not exceed 1.

We say that S ∈ Γn−1(f) ⊂ Rn is an exceptional face with respect to the axis OXi

if one of its vertices is at distance 1 to the axis OXi and another vertices constitute
(n−2)-dimensional face which lies in one of the coordinate hyperplane including the
axis OXi.

Fig. 1: A 1-dimensional exceptional face with respect to the axis OX2.

We say that S ∈ Γn−1(f) is an exceptional face of f if there exists i ∈ {1, . . . , n}
such that S is an exceptional face with respect to the axis OXi. Denote by Ef the
set of exceptional faces of f.

Denote by xi(P ), i = 1, . . . , n the i-coordinate of the point P ∈ Rn. For every face
S ∈ Γn−1(f) we shall denote by x1(S), . . . , xn(S) the coordinates of the intersection
of the hyperplane determined by S with the coordinate axes. We define m(S) :=

max{x1(S), . . . , xn(S)}. It is easy to see that

xi(S) = l(u,Γ+(f))/ui, i = 1, . . . , n,

where u is a primitive vector of S. If f is a nondegenerate isolated curve singularity
we may easily read off the Łojasiewicz exponent from the Γ+(f).
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Theorem 2.1. [Len96] Let f : (C2, 0) −→ (C, 0) be an isolated singularity nonde-
generate in Kouchnirenko’s sense and Γ(f) \ Ef 6= ∅. Then

(1) £0(f) = max
S∈Γ(f)\Ef

m(S)− 1.

2.3. Farey’s fraction

The sequence of Farey’s fractions of order N is the increasing sequence FN of all
fractions p/q, 1 ≤ q ≤ N, 0 ≤ p ≤ q, where p, q are relatively prime integers.

Example 2.2. F4 =

(
0

1
,

1

4
,

1

3
,

1

2
,

2

3
,

3

4
,

1

1

)
.

To determine the sequence of Farey’s fractions we may use the following classical
result from number theory.

Theorem 2.3. [Cauchy-Farey] Let FN be the sequence of Farey’s fractions of order
N. If

FN (n) =
a

b
and FN (n+ 1) =

c

d
then bc− ad = 1.

3. Auxiliary results

Denote by On the local ring of germs of holomorphic functions in n-variables at
0 ∈ Cn. Let f, g ∈ On.

We say that f and g are topologically right-left equivalent (f topRL∼ g) if there
exist homeomorphism germs φ : (C, 0)→ (C, 0) and ψ : (Cn, 0)→ (Cn, 0) such that
f = φ ◦ g ◦ ψ.

Let us recall that the Milnor number of an isolated singularity f : (Cn, 0) −→
(C, 0) is defined as

µ0(f) = dimCOn/(f ′z1 , . . . , f
′
zn).

From now on, we shall restrict our discussion to the case of a curve singularity.

Proposition 3.1. Let f :
(
C2, 0

)
−→ (C, 0) be an isolated singularity and let (fs)

be a deformation of f. There exists some neighbourhood U of 0 ∈ C, such that

£0(fs) = const

for every s ∈ U \ {0}.

Proof. Let (fs) be a deformation of f. By the upper semicontinuity of the Milnor
number in the Zariski topology (see [GLS, Thm. 2.6]) we have µ0(f) ≥ µ0(fs) and
µ0(fs) = const for s ∈ U \{0}, where U is a neighbourhood of 0 ∈ C. Let s0 ∈ U \{0}
and Us0 ⊂ U \ {0} be some neighbourhood of s0. Then µ0(fs) = µ0(fs0) for s ∈ Us0 .
Hence by Le-Ramanujan Theorem fs0

topRL∼ fs. Since the Łojasiewicz exponent is
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a topological invariant for n = 2 (see [Tes77]) we get £0(fs0) = £0(fs). Therefore
£0(fs) is locally constant and since U \ {0} is connected we have £0(fs) = const for
every s ∈ U \ {0}. �

As a consequence of the above proposition we may correctly define the Łojasiewicz
exponent of a deformation (fs) of f as £0((fs)) = £0(fs0), s0 ∈ U \ {0}, where U is
a suitable neighbourhood of 0 ∈ C.

Let L(f) be the set of Łojasiewicz exponents of all deformations of f. The next
proposition gives upper bound of the cardinality of L(f) and shows that L(f) is a
finite set.

Proposition 3.2.

#L(f) ≤ 1 +

µ0(f)∑
k=2

φ(k),

where φ is the Euler function.

Proof. Let (fs) be a deformation of f. By Płoski result [P85, Prop. 1.2] we have

£(fs) =
p

q
,

where p, q are relatively prime integers such that 1 ≤ q ≤ p ≤ µ0(fs). On the other
hand by the upper semicontinuity of the Milnor number we have µ0(fs) ≤ µ0(f).

Summing up

#L(f) ≤ 1 +

µ0(f)∑
k=2

φ(k).

It finishes the proof. �

Some examples suggest a better estimate than in Proposition 3.2, so we put the
following conjecture.

Conjecture 3.3. #L(f) ≤ µ0(f).

Denote by D(f) the family of all deformations of an isolated singularity f. Con-
sider the following subsets of D(f)

D+(f) = {(fs) ∈ D(f) : £0((fs)) > £0(f)}
D−(f) = {(fs) ∈ D(f) : £0((fs)) < £0(f)}.

By Proposition 3.2 the set L(f) is finite. Hence we can correctly define the fol-
lowing notions. Let D+(f) 6= ∅. Define the number

δ+(f) = min{£0((fs))−£0(f) : (fs) ∈ D+(f)}

and call it the jump upwards of the Łojasiewicz exponent of f. If D+(f) = ∅ we put
δ+(f) = 0.
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Let D−(f) 6= ∅. Define analogously to δ+(f) the number

δ−(f) = min{£0(f)−£0((fs)) : (fs) ∈ D−(f)}
and call it the jump downwards of the Łojasiewicz exponent of f. If D−(f) = ∅ we
put δ−(f) = 0. Denote by Dnd(f) the family of all nondegenerate deformations of
an isolated singularity f. We define analogously the sets D+

nd(f), D−nd(f) and the
nondegenerate jump upwards δ+

nd(f) and jump downwards δ−nd(f) of the Łojasiewicz
exponent of f.

4. Main result

Let f :
(
C2, 0

)
−→ (C, 0) be an isolated singularity. It is easy to check that f is

nearly convenient. Then for every i ∈ {1, 2} there exists a vertex on the axis OXi

or at distance 1 from the axis OXi.

Let K ⊂ {1, 2} be the set of the indices i satisfying two following conditions:

a) There exists the vertex Ai ∈ Γ0(f) at distance 1 from the axis OXi such that
£0(f) < 2xi(Ai)− 1;

b) If OXi ∩ Γ0(f) 6= ∅ then £0(f) < xi(OXi ∩ Γ0(f))− 1.

If K 6= ∅, we put M = maxi∈K xi(Ai). Let r be the fraction before
1

£0(f) + 1−M
in the sequence FM . Now, we give the formula for nondegenerate jump upwards of
the Łojasiewicz exponent of f.

Theorem 4.1. Let f :
(
C2, 0

)
−→ (C, 0) be an isolated and nondegenerate singu-

larity. Then

a) If K = ∅ then δ+
nd(f) = 0.

b) If K 6= ∅ then

δ+
nd(f) = M +

1

r
−£0(f)− 1.

Proof. a) Let (fs) be a deformation of f. By Theorem 2.1 we see that to change £0(f)

it is necessary to deform f by adding monomials related to the points below Γ+(f).

We have Γ+(fs) = const for sufficiently small s 6= 0. Since K = ∅, by Theorem 2.1
using elementary geometry methods we easily get

£0((fs)) ≤ £0(f).

Therefore δ+
nd(f) = 0 in this case.

b) It is easy to check that

Γ1(f) \ Ef = ∅ if and only if Γ0(f) = {(1, 1)}.
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Since K 6= ∅ and £0(f) ≥ 1, then Γ0(f) 6= {(1, 1)}. Hence Γ1(f) \ Ef 6= ∅.
Let i ∈ K. Then there exists a vertex Ai ∈ Γ0(f) at distance 1 from the axis

OXi, such that
£0(f) < 2xi(Ai)− 1.

Let Q ∈ R2 be such that Q 6= Ai and AiQ 6‖ OXi. Denote by xi(AiQ) the intersection
coordinate of the line determined by the segment AiQ and the axis OXi.

Let Di be the orthogonal projection of Ai to OX3−i and l be the line passing
through Ai and the point on axis OXi with i-coordinate equal to £0(f) + 1. Put
Ci = l ∩OX3−i and define the set 4i = 4AiCiDi.

Fig. 2: f(x, y) = x5y + x2y3 + xy6 + x13, K = {1, 2}, M = 6, £0(f) = 8.

Put
Si = {Q ∈ 4i ∩ N2 : xi(AiQ) > £0(f) + 1}.

Let e1 = (1, 0), e2 = (0, 1). Define the point Pi = Di + e3−i. We have

(2) xi(AiPi) = 2xi(Ai) > £0(f) + 1.

Hence Pi ∈ Si and Si 6= ∅. It is easy to check that

Si = (4i ∩ N2) \ (AiCi ∩AiDi).

Put ui = minQ∈Si xi(AiQ).

For every Q = (q1, q2) in Si we define the deformation (fQs ) ∈ Dnd,

fQs (x, y) = f(x, y) + sxq1yq2 + sxdx1(Ci)eydx2(Ci)e,
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where dae is the smallest integer not less than a. We calculate

£0((fQs )) = xi(AiQ)− 1 > £0(f).

Hence (fQs ) ∈ D+
nd. Conversely by definition of the sets Si, i ∈ K and Theorem 2.1

for every deformation (fs) ∈ D+
nd there exists i ∈ K and Q ∈ Si such that

£0((fs)) = xi(AiQ)− 1.

Summing up

(3) min{£0((fs)) : (fs) ∈ D+
nd(f)} = min

i∈K
ui − 1.

Using elementary geometry methods we calculate

ui = min
{
xi(Ai) +

n

m
: xi(Ai) +

n

m
> £0(f) + 1,m, n ∈ N+, n ≤ xi(Ai)

}
, i ∈ K.

Put
u = min

{
M +

n

m
: M +

n

m
> £0(f) + 1,m, n ∈ N+, n ≤M

}
.

By Theorem 2.1 we easily get £0(f) ≥M and we calculate

(4) u = min
i∈K

ui.

Define

r = max

{
m

n
:
m

n
<

1

£0(f) + 1−M
,m,n ∈ N+, n ≤M

}
.

Then

(5) u = M +
1

r
.

We show that 1/(£0(f) + 1 −M) is the Farey’s fraction of order M and then by
definition r is the one before. Since £0(f) ≥M, we get

1/(£0(f) + 1−M) ≤ 1.

If £0(f) is an integer, then by definition of K and M we get

£0(f) + 1−M < M and 1/(£0(f) + 1−M) ∈ FM .

If £0(f) is not an integer, then by Theorem 2.1 there exists j ∈ {1, 2} such that

£0(f) = xj(AjBj)− 1, where AjBj ∈ Γ1(f)

is the unexceptional segment with vertex Aj . By definition of K we get that j ∈ K.
Without loss of generality we may suppose that £0(f) = x2(A2B2)−1 (as in Figure
2). We calculate

x2(A2B2) = x2(A2) +
x2(A2)− x2(B2)

x1(B2)− x1(A2)
= x2(A2) +

n

m
,

where n = x2(A2)− x2(B2) and m = x1(B2)− x1(A2). Hence
1

£0(f) + 1−M
=

1

x2(A2) + n
m −M

=
m

n−m(M − x2(A2))
.
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Therefore the latter denominator is less than n = x2(A2)− x2(B2) ≤ M. Summing
up 1/(£0(f) + 1−M) is the Farey’s fraction of order M. By (3),(4) and (5) we get

δ+
nd(f) = u− 1−£0(f) = M +

1

r
−£0(f)− 1.

�

Example 4.2. Let
f(x, y) = x5y + x2y3 + xy6 + x13

(see Figure 2). By Theorem 2.1 we calculate £0(f) = 8. We check that K = {1, 2}
and M = 6. Now, we calculate

1/(£0(f) + 1−M) = 1/3

and by Cauchy-Farey Theorem we get r = 1/4. Hence by Theorem 4.1(b) we have

δ+
nd(f) = M +

1

r
−£0(f)− 1 = 1.

Example 4.3. Let f(x, y) = y4 + yx5. In this case we get that K = {1}. Using
Theorem 2.1 and Theorem 4.1b) we calculate

£0(f) = 5
2

3
, δ+
nd(f) =

1

3
.

By the result of Płoski-Barosso ( [P88], [GaP]) no number in the interval (5 2
3 , 6) can

be the Łojasiewicz exponent of an isolated curve singularity. Therefore in this case
we get

δ+(f) = δ+
nd(f) =

1

3
.

Now, we give an example of singularity such that the nondegenerate jump up-
wards of its Łojasiewicz exponent is indeed smaller then the jump upwards of its
Łojasiewicz exponent.

Example 4.4. Let
f(x, y) = x3 + y3.

We easily calculate that £0(f) = 2. We check that K = ∅ and then by Theorem 4.1
(a) we have δ+

nd(f) = 0. On the other hand if we take degenerate deformation

fs(x, y) = f(x, y) + s(x2 + 2xy + y2),

we get £0(fs) = 3 and one may check that δ+(f) = 1. Hence in this case δ+
nd(f) <

δ+(f).

Now, we consider the case of the nondegenerate jump downstairs of the Ło-
jasiewicz exponent. First notice that if

Γ1(f) \ Ef = ∅ then £0(f) = 1 and δ−nd(f) = δ−(f) = 0.
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Suppose that
Γ1(f) \ Ef 6= ∅.

By Theorem 2.1 there exists i ∈ {1, 2} and the vertices Qi, Ri ∈ Γ0(f) such that
QiRi ∈ Γ1(f) \ Ef and

(6) £0(f) = xi(QiRi)− 1.

Fig. 3: f(x, y) = y7 + x2y3 + x5y + x13, I = {2}, M1 = 5, £0(f) = 6.

Let I ⊂ {1, 2} be the set of indexes i satisfying (6). Let

Ti ∈ {x3−i = 1} \ Γ+(f)

be the nearest point on the lattice next to

QiRi ∩ {x3−i = 1}, i ∈ I and put M = max
i∈I

xi(Ti).

In the sequence FM let r be the next fraction after
1

£0(f) + 1−M
.

If i 6∈ I and
{Ai} = {x3−i = 1} ∩ Γ0(f) 6= ∅,

we put Mi = max{xi(Ai), x3−i(T3−i)} Let ri be the next fraction after 1
£0(f)+1−Mi

in the sequence FMi
.

Using similar methods as in the proof of Theorem 4.1 one may prove the following

Theorem 4.5. Let f :
(
C2, 0

)
−→ (C, 0) be an isolated and nondegenerate singu-

larity and Γ1(f) \ Ef 6= ∅. Then
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a) If I = {1, 2} then δ−nd(f) = £0(f) + 1−M − 1
r ,

b) If I = {i} for some i ∈ {1, 2} then we consider two following cases

b1) There are no any exceptional segments with respect to the axis OXi.
If {xi = 1} ∩ Γ0(f) = ∅, then δ−nd(f) = £0(f) + 1−M − 1

r

If {xi = 1} ∩ Γ0(f) 6= ∅, then δ−nd(f) = £0(f) + 1−Mi − 1
ri
,

b2) There is an exceptional segment S with respect to the axis OX3−i.
If x3−i(S ∩OX3−i) ≥ £0(f) + 1, then δ−nd(f) = £0(f) + 1−Mi − 1

ri

If x3−i(S ∩OX3−i) < £0(f) + 1, then δ−nd(f) = £0(f) + 1−M − 1
r .

Example 4.6. Let
f(x, y) = y7 + x2y3 + x5y + x13.

Applying Theorem 2.1 we calculate £0(f) = 6. We check that

I = {2} and M1 = max{x1(A1), x2(T2)} = 5

(see Figure 3). Now, we calculate

1/(£0(f) + 1−M1) = 1/2

and by Cauchy-Farey Theorem we get that r1 = 3/5. We also check that

x1(S ∩OX1) = 13 ≥ £0(f) + 1.

Hence by Theorem 4.5(b2) we have

δ−nd(f) = £0(f) + 1−M1 −
1

r1
=

1

3
.
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O NIEZDEGENEROWANYCH SKOKACH WYKŁADNIKA
ŁOJASIEWICZA

S t r e s z c z e n i e
W pracy podajemy wzory na skok w górę i w dół wykładnika Łojasiewicza w klasie

niezdegenerowanych deformacji osobliwości krzywej w terminach jej diagramu Newtona.

Słowa kluczowe: osobliwość izolowana, deformacje holomorficzne, skok, niedegeneracja w
sensie Kusznirenki, wykładnik Łojasiewicza, liczba Milnora
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MODELING CRYSTAL GROWTH: POLYHEDRA WITH FACES
PARALLEL TO PLANES FROM A FIXED FINITE SET

Summary
In this paper we present growing crystal as a point in finite dimentional space moving

inside a cone SG ⊂ Rm corresponding to the family BG of polyhedra with faces parallel to
planes from a fixed finite set G. For this purpose we modify Minkowski addition of convex
sets and explain in depth a representation of a growth of certain crystal of NaCl. We also
provide a number of illustrations of a respective cone S′

G of symmetric polyhedra and the
trajectory of our growing crystal which is a broken line.

Keywords and phrases: crystal growth, abstract cone of convex polyhedra, modified Min-
kowski addition, trajectory of growing crystal

1. Introduction

Natural geometrical representation of monocrystal is a nonempty bounded closed
convex subset of three-dimensional space R3. The family of non-empty bounded
closed convex subsets in Hausdorff topological vector spaces X was given a lot of
attention. In particular this family with Minkowski addition

A+̇B = A+B = {a+ b | a ∈ A,B ∈ B}

and multiplication by nonnegative number λA = {λa | a ∈ A} is an abstract convex
cone with ordering by inclusion and with order law of cancellation (A+̇B ⊂ B+̇C

implies A ⊂ C).
Minkowski addition and subtraction

A−̇B = {x ∈ X |x+B ⊂ A}

allow to model crystal growth with the help of one variable multifunction with convex
values. As we proved in [1] the formula
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A(u) =
u− s
t− s

A(t)−̇u− t
t− s

A(s),

s < t < u represents the growth of crystal where each face grows with constant
velocity.

Minkowski duality enables representation of convex bodies with the help of sup-
port functions [4], i.e. for compact convex subset A of Rn the function h : Rn −→ R
defined by h(·) = maxx∈A〈·, x〉 is sublinear, it is called support function of the set
A and denoted by hA. On the other hand, the set A is equal to {x|〈·, x〉 ≤ h}, it is
called a subdifferential of the sublinear function h at 0 and denoted by ∂h|0.

In reality a crystal of a specific chemical compound has finite number of faces
and planes of these fases are determined by its crystalographic structure. Therefore,
it is possible to restrict ourselves to the study of a subfamily of convex polyhedra
with normal vectors belonging to some fixed finite subset of Euclidean unit sphere.

In Section 2 we modify Minkowski addition and duality for convex polyhedra
with normal vectors belonging to some fixed finite set G. In Section 3 we restrict
ourselves to symmetric polyhedra and give an example of a family of symmetric
polyhedra with faces parallel to 26 faces of truncated cuboctahedron (Example 3.1).
In Example 3.2 we show a trajectory of one possible growing crystal of NaCl.

In Section 4 we present Minkowski difference as a projection of nonnegative octant
on the cone BG of convex polyhedra with normal vectors belonging to G. Minkowski
difference and the projection preserves our formulas of crystal growth (see [1]). In
Example 4.1 we show that our growing crystal of NaCl is a projection of a uniform
motion along a straight line on the cone B′G of symmetric convex polyhedra with
normal vectors belonging to G.

2. Family of convex polyhedra with faces parallel to planes
from fixed finite set

Let G = {z1, ..., zm} be such a finite subset of the Euclidean unit sphere S2 that
0 ∈ int convG.

Let B(R3) be a family of all nonempty bounded closed convex subsets of R3. The
family B(R3) with Minkowski addition and multiplication by nonnegative numbers
is an abstract convex cone satisfying the order law of cancellation. The cone B(R3)

can be embeded into a vector space MRH(R3) of virtual bodies, which is a quotient
space B(R3)2/∼, where (A,B) ∼ (C,D) if and only if A+D = B+C, and [A,B] is
a quotient class of (A,B).

For A ∈ B(R3) we define a support function hA on R3 by hA(x) = maxa∈A(a, x),
where 〈·, ·〉 is the inner product. Also for a nonzero z ∈ R3 we define a support set
A(z) = {a ∈ A | 〈a, z〉 = hA(z)}. We denote

BG(R3) = {A ∈ B(R3) |A = {x ∈ R3 | 〈x, zi〉 ≤ hA(zi), i = 1, ...,m}}.

Elements of the family BG = BG(R3) will be called G-polyhedra.
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Notice that unless 0 ∈ int convG the elements of BG would be unbounded polyhe-
dral sets. Also if A ∈ BG then all normal vectors of two-dimensional faces (support
sets) of A belong to G. An important weakness of BG is that usually Minkowski sum
A+B of G-polyhedra A and B are not G-polyhedra. That problem does not appear
if m = 4 or if G is the set of six elements of S2 contained in axes of coordinates.
But consider the set of eight normal vectors to the octahedron which is a unit ball
in R3 with norm || · ||1 from l1. Then segments I, J parallel respectively to x1-axis
and x2-axis are G-polyhedra. However, I + J is a rectangle parallel to x1x2-plane
and it is not a G-polyhedron.

We can escape this problem in the following way. Let us fix a G-polyhedron
K where the set of normal vectors of K is equal to G. By BK(R3) we define the
family of all convex sets homothetic with some summand of K. Then a Minkowski
sum of K-polyhedra is always a K-polyhedron. However, growing crystal has fixed
possible planes of their faces (it is always a G-polyhedron) and usualy there is no
G-polyhedron K such that crystal is always homotetic with some summand of K.
Though every BG(R3) is contained in some BK(R3), usually such K has much more
two-dimensional faces than m. For example if G is a set of 8 vectors normal to faces
of regular octahedron then K is a set of 14 vectors normal to faces of truncated
octahedron and if G is a set of 14 vectors normal to faces of truncated octahedron
then K is a set of 26 vectors normal to faces of truncated cuboctahedron.

Let us define a generalization of Minkowski duality to the family BG. For A ∈ BG

let hA = {hA(z1), ..., hA(zm)} ∈ Rm. Notice that hA : R3 −→ R is a support function
or the polyhedron A and that hA is a vector corresponding to the values of hA on
discrete subset of m elements of the unit sphere S2. Let SG = {hA |A ∈ BG} ⊂ Rm.
As we mentioned before, for A,B ∈ BG the Minkowski sum A+B usually does not
belong to BG. Therefore, let us define

A
G
+ B = {x ∈ R3 | 〈x, zi〉 ≤ hAi + hBi , i = 1, ...,m}.

Then

A
G
+ B ∈ BG,

and we have

hA
G
+B = hA + hB ∈ SG.

Also htA = thA for t ≥ 0. Hence the set BG with the addition
G
+ and multiplication

by nonnegative numbers is an abstract convex cone, i.e. (BG,
G
+) is a commutative

semigroup with zero such that

(i) (A
G
+ B)

G
+ C = A

G
+ (B

G
+ C),

(ii) A
G
+ B = B

G
+ A,

(iii) A
G
+ {0} = A,

for all A,B,C ∈ BG, and also
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(iv) 1A = A,
(v) t(sA) = (ts)A,

(vi) (t+ s)A = tA
G
+ sA,

(vii) t(A
G
+ B) = tA

G
+ tB,

for all A,B ∈ BG and s, t ≥ 0.
Also SG is a convex cone in Rm.
On the other hand, for h ∈ SG we define a convex polyhedron

Ah = {x ∈ R3 | 〈x, zi〉 ≤ hi, i = 1, ...,m} ∈ BG.

Obviously,

Ah+g = Ah

G
+ Ag and Ath = tAh

for h, g ∈ SG and t ≥ 0.
Notice that htA = thA for negative t if and only if the set A is a singleton. In a

similar way also Ath = tAh for negative t if and only if the set Ah is a singleton.
The mappings

BG 3 A 7−→ hA ∈ SG and SG 3 h 7−→ Ah ∈ BG

are mutually inverse, and the abstract convex cones (BG,
G
+, ·) and (SG,+, ·) are

isomorphic. This way any polyhedron in BG can be considered a point in SG ⊂ Rm.
The vector hA represents the polyhedron A in a manner of [3].

3. Family of symmetric convex polyhedra

Crystals grow in a symmetric manner, since certain subsets of their faces grow with
equal rates. Therefore, we can consider a subfamily B′G ⊂ BG consisting of polyhedra
with

hA(z1) = ... = hA(zk1
), hA(zk1+1) = ... = hA(zk2

), ..., hA(zkl−1+1)

= ... = hA(zkl=m).

The corresponding cone S′G ⊂ SG can be looked upon as a subset of Rl. Namely, for
A ∈ B′G we can define

h′A = (hA(zk1
), ..., hA(zkl

)).

Then
A = {x | 〈x, zi〉 ≤ hA(zkj

) for kj−1 < i ≤ kj}.

Example 3.1. A family B′G of polyhedra represented by a three dimensional cone S′G.
Let G be the set of 26 vectors normal to the faces of truncated cuboctahedron i.e.

z1 = (1, 0, 0), z2(−1, 0, 0), z3 = (0, 1, 0), ..., z7 =
1√
2
(1, 1, 0), z7 =

1√
2
(1, 1, 0),

z8 =
1√
2
(1,−1, 0), ..., z19 =

1√
3
(1, 1, 1), ..., z26 =

1√
3
(−1,−1,−1).
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Vectors z1−6 correspond to the 6 faces of a cube, vectors z7−18 correspond to the
12 edges of a cube and vectors z19−26 to the 8 vertices. We consider a subfamily of
B′G ⊂ BG consisting of polyhedra with

hA(z1) = ... = hA(z6), hA(z7) = ... = hA(z18), hA(z19) = ... = hA(z26).

Polyhedra from B′G represent many crystals, e.g. crystals of NaCl. Now, for A ∈ B′G
we have h′A = (hA(z6), hA(z18), hA(z26)). Let us notice that h′ = (h′1, h

′
2, h
′
3) ∈ S′G

if and only if the following system of inequalities is satisfied:
h′1 ≤

√
2h′2,

h′2 ≤
√
2h′1,

h′2 ≤
√
6
2 h
′
3,

h′3 ≤
√
6
2 h
′
2.

Let us notice that S′G is a three-dimensional cone, and a section of this cone with
the plane h′2 = 1 is a rectangle [2−1/2, 21/2] × [1.5−1/2, 1.51/2]. The following figure
illustrates this section of S′G.

-

6

h′10 1

1

h′3

• • •

• • •

• • •h
′A

h′B

h′C
h′D

h′E

h′F

h′G

h′H

h′J

A

B

C
D

E

F

G

H

J

Fig. 3.1: Section of the cone S′
G with the plane h′

2 = 0 in Example 3.1.

Large dots in Fig. 3.1 are points of the cone S′G representing certain polyhedra
from B′G. In particular, the vertices of the rectangle represent a rhombidodecahedron
A, a regular octahedron C, a cuboctahedron E and a cube G. Side centers of the
rectangle represent truncated rhombidodecahedra

B =
1

2
(A

G
+ C) and H =

1

2
(A

G
+ G),
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a truncated octahedron
D =

1

2
(C

G
+ E)

and a truncated cube
F =

1

2
(E

G
+ G).

In all these cases the sum
G
+ coincides with the usual Minkowski sum +. The center

of the rectangle represents a (small) rhombicuboctahedron

J =
1

2
(A

G
+ E) =

1

2
(C

G
+ G) =

1

2
(B

G
+ E) =

1

2
(D

G
+ H).

The following figure shows that only the sum C
G
+ G coincides with C + G. Other

sums differ.

2J = C +G A+ E B + F = D +H

Fig. 3.2: Minkowski sums A+ E,B + F,C +G and D +H from Example 3.1.

In the following example we show a trajectory of a growing crystal within the
cone described in Example 3.1.

Example 3.2. Growing crystal of NaCl. Let A(t), t ≥ 0 be a certain continuum of
crystals (polyhedra) from the family S′G from Example 3.1. A variable t represents
time. We assume that the seed A(0) of a crystal is defined by a system of inequalities

〈x, z1〉 ≤ 1,
...

〈x, z26〉 ≤ 1,

and that the faces of our crystal parallel to the faces of a cube

grow with a constant speed 1, the faces corresponding to the edges of a cube grow
with a constant speed 2 and the faces corresponding to the vertices of a cube grow
with a constant speed 3. The changing shape of the crystal is illustrated in Fig. 3.3.

A(0)
A(.179) A(.3) A(.408) A(.707)

Fig. 3.3: Growing crystal of NaCl from Example 3.2.
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Notice that

hA(t) = (

6︷ ︸︸ ︷
1 + t, ..., 1 + t,

12︷ ︸︸ ︷
1 + 2t, ..., 1 + 2t,

8︷ ︸︸ ︷
1 + 3t, ..., 1 + 3t)

and
h′A(t) = (1 + t, 1 + 2t, 1 + 3t) for t ≤ 6−1/2 ≈ .408.

For t ∈ [6−1/2, 2−1/2] we have

h′A(t) = (1 + t, 1 + 2t, 1.51/2 + 61/2t).

In this interval faces of A(t) corresponding to the vertices of the cube disappear. At
last for t ≥ 2−1/2 ≈ .707 we have

h′A(t) = (1 + t, 21/2 + 21/2t, 31/2 + 31/2t) and A(t)

is a growing cube. Fig. 3.4 shows the trajectory of the point h′A(t) corresponding to
the growing crystal A(t) within the cone B′G.

-

6

h′10 1

1

h′3

• •

• ◦
•

•

•

•

h′A

h′Ch′E

h′G

h′A(0)

h′A(.179)

@@R

h′A(.408)

h′A(.707)
trajectory of crystal A(t)

Fig. 3.4. Sections of the cone S′
G in Example 3.2.

Four rectangles in Fig. 3.4 represent intersections of the cone B′G with planes
parallel to the plane 0h′1h

′
3 and containing the points h′A(0), h′A(.179), h′A(.408)

and h′A(.707). The trajectory of h′A(t) is a broken line consisting of two segments
[h′A(0), h′A(.408)] and [h′A(.408), h′A(.707)], and a ray. The first segment is contained
in the interior of the cone B′G and crosses the diagonal of the rectangle in the point
h′A(.179). The crossing point represents the time when some edges of the crystal A(t)
disappear and some other ones appear. In other words the faces of the crystal change
the number of sides. In particular octagonal faces become squares, rectangular faces
become octagonal and hexagonal faces become triangles. The second segment of the
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trajectory is contained in the relative interior of the face of the cone B′G. Lastly the
ray of the trajectory is contained in the unbounded edge of the cone B′G.

4. Minkowski difference of polyhedra from the cone BG

The Minkowski difference of compact convex sets A and B is defined in the following
way:

A−̇B = {x ∈ X |x+B ⊂ A}.

Let us observe that nonempty difference A−̇B of A,B ∈ BG also belongs to BG.

Also (A−̇B)
G
+ B ⊂ A.

The cone B(R3) can be embeded (in a manner well described in [2]) into a
vector space MRH(R3) of virtual bodies, which is a quotient space B(R3)2/∼, where
(A,B) ∼ (C,D) if and only if A + D = B + C, and [A,B] is a quotient class of
(A,B). In a similar way the cone BG can be embeded into a vector space MRH(BG)

of virtual polyhedra, which is a quotient space B2
G/≈, where (A,B) ≈ (C,D) if and

only if

A
G
+ D = B

G
+ C, and [A,B]G

is a quotient class of (A,B). Let us notice that for A,B,C,D ∈ BG the relation
(A,B) ∼ (C,D) implies (A,B) ≈ (C,D) but not conversly. E.g. in Example 3.1 we
have

A+ E 6= C +G but A
G
+ E = C

G
+ G.

Then (C,E) ≈ (A,G), or (C,E) ∈ [A,G]G but (C,E) 6∈ [A,G].
In the following example we apply the formula

A(u) =
u− s
t− s

A(t)−̇u− t
t− s

A(s), s < t < u

from [1] to the growing crystal from Example 3.1.

Example 4.1. Let p([A,B]) = A−̇B be a function (projection) from the subset of
MRH(BG) to BG. Let us notice that the definition of p does not depend on the
choice of element of the quotient class [A,B]. Also p([A, {0}]) = A for all A ∈ BG.
Applying the formula from [1] to the growing crystal A(t) from Example 3.1 for
u > .1 we obtain

A(u) =
u− 0

0.1− 0
A(0.1)−̇u− 0.1

0.1− 0
A(0) = 10uA(0.1)−̇(10u− 1)A(0)

= p([10uA(0.1), (10u− 1)A(0)]) = p([A(0.1), {0}] + (10u− 1)[A(0.1), A(0)])

= p([A(0.1), {0}] + (u− 0.1)[C,D]),

where C is a cube defined by

h′C = (3
√
3− 2

√
2, 3
√
6− 4, 9− 2

√
6)
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and D is a truncated octahedron given by

h′D = (3
√
3− 2

√
2− 1, 3

√
6− 6, 6− 2

√
6).

Let us notice that the element [C,D] of the space MRH(BG) can be understood
as a constant velocity vector with its origin in D and its end in C. We found the
polyhedra C and D such that (C,D) ∈ 10[A(0.1), A(0)] and (C,D) is a minimal pair
of sets (or minimal element of 10[A(0.1), A(0)]). In fact (C,D) is a minimal element

of 10[A(0.1), A(0)]G, because the origin h′D of the vector
−→

h′Dh′C is contained in a
face of the cone S′G and the endpoint h′C is contained in an extreme ray of the cone

S′G. Figuratively speaking the vector
−→

h′Dh′C cannot be pushed deeper in the cone
S′G.

The projection p is coresponding to the projection p′ : R3
+ −→ S′G in such a way

that

p′(h′A − h′B) = h′(A−̇B).

In the case of Example 3.1 we can give an explicit formula of p′. Namely,

p′(h′) = g′

if and only if

g′1 = min(h′1,
√
2h′2,
√
3h′3),

g′2 = min(
√
2h′1, h

′
2,

√
3√
2
h′3),

g′3 = min(
√
3h′1,

√
3√
2
h′2, h

′
3).

The formula implies that

(i) if


g′1 <

√
2g′2,

g′2 <
√
2g′1,

g′2 <
√
6
2 g
′
3,

g′3 <
√
6
2 g
′
2,

then p′(h′) = g′ only for h′ = g′,

(ii) if


g′1 <

√
2g′2,

g′2 <
√
2g′1,

g′3 =
√
6
2 g
′
2,

then p′(h′) = g′ for


h′1 = g′1,

h′2 = g′2,

h′3 ≥ g′3,

(iii) if


g′1 =

√
2g′2,

g′2 <
√
6
2 g
′
3,

g′3 <
√
6
2 g
′
2,

then p′(h′) = g′ for


h′1 ≥ g′1,
h′2 = g′2,

h′3 = g′3,
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(iv) if


g′1 <

√
2g′2,

g′2 ≤
√
2g′1,

g′2 =
√
6
2 g
′
3,

or


g′2 =

√
2g′1,

g′2 <
√
6
2 g
′
3,

g′3 <
√
6
2 g
′
2,

then p′(h′) = g′ for


h′1 = g′1,

h′2 ≥ g′2,
h′3 = g′3,

(v) if


g′2 =

√
2g′1,

g′2 > 0,

g′3 =
√
6
2 g
′
2,

then p′(h′) = g′ for


h′1 = g′1,

h′2 ≥ g′2,
h′3 ≥ g′3,

(vi) if


g′1 =

√
2g′2,

g′2 > 0,

g′3 =
√
6
2 g
′
2,

then p′(h′) = g′ for


h′1 ≥ g′1,
h′2 = g′2,

h′3 ≥ g′3,

(vii) if


g′1 =

√
2g′2,

g′2 > 0,

g′2 =
√
6
2 g
′
3,

then p′(h′) = g′ for


h′1 ≥ g′1,
h′2 ≥ g′2,
h′3 = g′3,

and

(viii) if g′ = 0 then p′(h′) = g′ for h′ ≥ 0 such that h′1h′2h′3 = 0.

5. Conclusions

In [3] authors study polyhedra representing certain crystals restricting themselves
to the family of polyhedra homothetic to summands of one fixed polyhedron. In this
paper we set a goal to drop the restriction of “homothetic to summands of one fixed
polyhedron” in favor of “with faces parallel to fixed set of planes”. In [3] the authors
do not need to modify Minkowski addition. However, our approach is adequate to
the physical nature of crystal growth.

Our approach will enable us to represent any G-polyhedron as Minkowski sum
of undecomposable bodies. We also hope to find a way to construct minimal pairs
of G-polyhedra (minimal representation of vectors with the origin and the endpoint
in the cone of G-polyhedra).
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MODELOWANIE WZROSTU KRYSZTAŁÓW:
WIELOŚCIANY WYPUKŁE O WEKTORACH NORMALNYCH
Z PEWNEGO USTALONEGO SKOŃCZONEGO
ZBIORU WEKTORÓW

S t r e s z c z e n i e
W artykule przedstawiamy rosnący kryształ jako punkt (wektor) skończenie wymiarowej

przestrzeni Rm poruszający się w stożku SG zawartym w Rm. Stożek SG odpowiada rodzinie
wszystkich wielościanów wypukłych o wektorach normalnych należących do pewnego ustalo-
nego skończonego zbioru wektorów G, czyli G-wielościanów.

W tym celu modyfikujemy sumę Minkowskiego zbiorów i dogłębnie wyjaśniamy repre-
zentację wzrostu pewnego modelowego kryształu NaCl. Załączamy również kilka ilustracji
odpowiedniego stożka S′

G symetrycznych wielościanów oraz trajektorię naszego modelowego
kryształu, która jest łamaną.

W pracy [3] autorzy badają wielościany przedstawiąjace pewne kryształy ograniczając
się do rodziny wielościanów homotetycznych ze składnikami pewnego ustalonego wielościa-
nu. W przeciwieństwie, porzuciliśmy ograniczenie bycia składnikiem ustalonego wielościanu
na rzecz wektorów normalnych z ustalonego zbioru skończonego. Takie podejście wymusiło
na nas modyfikację samej sumy Minkowskiego. Jednak wydaje się, że nasze podejście lepiej
odzwierciedla fizyczną naturę wzrostu kryształu. Ponadto nasze podejście umożliwia przed-
stawienie każdego G-wielościanu jako sumy Minkowskiego wielościanów nierozkładalnych.
Zamierzamy w przyszłości znaleźć metodę konstruowania par minimalnych G-wielościanów,
czyli minimalnej reprezentacji wektorów o początku i końcu należących do stożka G-wielo-
ścianów.

Słowa kluczowe: wzrost kryształu, stożek abstrakcyjny wielościanów wypukłych, zmody-
fikowana suma Minkowskiego, trajektoria rosnącego kryształu
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Photos 1–2: Growth of cooper (II) sulfate hydrate crystal CuSO4

(Marcin Kowiel, Chair of Organic Chemistry, Medical University in Poznań).
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Photos 3–4: Models of a crystal of NaCl.
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Photos 5–6: String of summands of truncated cubooctahedron and a few other Johnson
solids.
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Photos 7–8: String of summands of truncated cubooctahedron and a few other Johnson
solids (continued).
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Photos 9–10: String of summands of truncated cubooctahedron and a few other Johnson
solids (continued).
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MAGIC MATRICES WITH THEIR POWERS,
NUMERICAL RANGES AND SOME OPEN PROBLEMS

Summary
The aim of this paper is to derive new properties of magic matrices, i.e. square matrices

of natural entries with equal sums in each row, column, main diagonal and antidiagonal.
We focus our attention on squares, higher powers and numerical ranges of magic matrices
also on their powers. Some open problems are also proposed.
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1. Introduction and notations

The aim of this paper is to investigate certain properties of magic matrices, i.e.
square matrices (of order n) satisfying the following conditions:

(m1) the entries aij of A belong to the set {1, 2, . . . , n2},
(m2) if (i, j) 6= (k, l) then aij 6= akl,
(m3) the sums in each row, each column, main diagonal and antidiagonal are

equal.
Some authors by “magic matrix” mean a matrix satisfying only conditions (m2)

and (m3) and consider matrices with entries being prime numbers, squares of natu-
ral numbers, etc. In this paper we call such mnatrices semi-magic. Magic matrices
(magic squares) were already known 4000 years ago and they still remain an inter-
esting area of research and education [3].

The MATLAB package is a basic software for numerical linear algebra and it is
equipped with a build-in function magic(n) which returns a magic matrix of order n.

We will use the following notations throughout this paper:
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Mn(C) – the algebra of all complex matrices of order n;

‖A‖ := sup{‖Ax‖; ‖x‖ = 1} – the operator norm of A ∈Mn(C);

‖A‖1 := maxj

∑n
i=1 |aij | – the 1-norm of A ∈Mn(C);

‖A‖∞ := maxi

∑n
j=1 |aij | – the infinity-norm of A ∈Mn(C);

‖A‖F := (
∑n

i,j=1 |aij |2)1/2 – the Frobenius (Euclidean) norm of A ∈Mn(C);

σ(A) – the spectrum of A ∈Mn(C);

AT , A∗ – the transpose and adjoint of A ∈Mn(C) respectively;

trA :=
∑n

i=1 aii – the trace of A = (aij)
n
i,j=1 ∈Mn(C);

convD – the convex hull of the set D ⊂ C;

A⊕B – the direct sum of the matrices A and B.
Let A ∈Mn(C) be a magic matrix. It is trivial to notice that the sum determined

by condition (m3) is equal to

s =
n(n2 + 1)

2
.

From now on s will denote this number. We easily verify that s is an eigenvalue
of the magic matrix and a corresponding eigenvector is x = (1, 1, . . . , 1)T . It may
be difficult to compute other eigenvalues (see for example [10]); however, in view
of the Perron-Frobenius theorem [5] their moduli must be strictly less than s. Let
B ∈ Mn(R) be a positive matrix, let λ1 > 0 denote its eigenvalue with largest
modulus and let m and M denote its smallest and largest entry. The following
estimate of Hopf [12] holds:

|λi| ≤ λ1
M −m
M +m

(i = 2, . . . , n),

optimal in the general case. In the further part of this paper we give a better estimate
for magic matrices. Since s is an eigenvalue of A and ‖A‖2 ≤ ‖A‖1‖A‖∞ we have
‖A‖ = s.

Let us now recall the celebrated Schur theorem (1909):

Theorem 1. Every matrix A ∈ Mn(C) is unitarily similar to an upper triangular
matrix, i.e. A = UTU∗, where U∗U = I, and T = (tij) satisfies tij = 0 if j > i.

The original proof was published in [15] but it may also be found in many text-
books (see for example [14]).

The following famous theorem was proved by Gerschgorin in 1931 [6]:

Theorem 2. The spectrum of A ∈ Mn(C) is contained in the union G(A) of the
discs

Gi(A) :=
{
z ∈ C : |aii − z| ≤

∑
j 6=i

|aij |
}

(i = 1, . . . , n).
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Moreover, if k of the Gerschgorin discs form a connected set, then this set contains
at precisely k eigenvalues (counted with multiplicities).

For the proof see also [11, 14].

Remark 1. A.Zalewska-Mitura and J. Zemánek considered in [16] the set

Z(A) :=
⋂
{G(U∗AU) : U unitary}

and proved that for some matrices Z(A) = σ(A) (for example matrices whose squares
are normal, and matrices satisfying quadratic equation) but this equality is not valid
in general. Some open problems were also proposed.

The next theorem was proved by T. J. Laffey (1996) (see [16]).

Theorem 3. Let A ∈Mn(C) be such that A2 is normal. Then A is unitarily similar
to a direct sum of blocks of dimension at most 2.

2. Properties of certain magic matrices and their powers

In this section we discuss some properties of all 3× 3 magic matrices and of magic
matrices of orders 4k, k = 1, 2, . . . , generated by MATLAB and their powers.

At first let us consider magic matrices of order 3. It is known and easy to verify
by computer that there are only eight magic matrices of order 3:
(1)

A1 =

 8 1 6

3 5 7

4 9 2

 , A2 =

 8 3 4

1 5 9

6 7 2

 , A3 =

 2 9 4

7 5 3

6 1 8

 , A4 =

 2 7 6

9 5 1

4 3 8

 ,
(2)

A5 =

 4 9 2

3 5 7

8 1 6

 , A6 =

 4 3 8

9 5 1

2 7 6

 , A7 =

 6 1 8

7 5 3

2 9 4

 , A8 =

 6 7 2

1 5 9

8 3 4

 .
Because all matrices of the form (1) may be obtained from A1 by transpositions and
unitary similarities, and A5 plays the same role for (2), it is enough to find formulas
for the powers of A1 and A5 to obtain formulas for the powers of all magic matrices
of order 3.

The following may be easily verified by induction:

Lemma 1. Let a := 225, b := 24. Then, for k = 0, 1, 2, . . . ,

A2k+1
1 =

 5ak + 3bk 5ak − 4bk 5ak + bk

5ak − 2bk 5ak 5ak + 2bk

5ak − bk 5ak + 4bk 5ak − 3bk

 ,
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A2k+2
1 =

 75ak + 16bk 75ak − 8bk 75ak − 8bk

75ak − 8bk 75ak + 16bk 75ak − 8bk

75ak − 8bk 75ak − 8bk 75ak + 16bk

 ,
A2k+1

5 =

 5ak + (−1)k+1 · bk 5ak − (−1)k+1 · 4bk 5ak + (−1)k+1 · 3bk
5ak + (−1)k+1 · 2bk 5ak 5ak − (−1)k+1 · 2bk
5ak − (−1)k+1 · 3bk 5ak + (−1)k+1 · 4bk 5ak − (−1)k+1 · bk

 ,

A2k+2
5 =

75ak + (−1)k+1 · 16bk 75ak − (−1)k+1 · 8bk 75ak − (−1)k+1 · 8bk
75ak − (−1)k+1 · 8bk 75ak + (−1)k+1 · 16bk 75ak − (−1)k+1 · 8bk
75ak − (−1)k+1 · 8bk 75ak − (−1)k+1 · 8bk 75ak + (−1)k+1 · 16bk

 .
We easily obtain two corollaries:

Corollary 1.
A4n

1 = A4n
5 for n = 1, 2, 3, . . . .

Corollary 2. Odd powers of magic matrices of order 3 are semi-magic matrices,
and even powers are symmetric Toeplitz matrices (and multiples of doubly stochastic
matrices).

Next we turn our attention to magic matrices of order 4k, k = 1, 2, . . . , generated
by MATLAB. The following result was proved by Kirkland and Neumann in [10]:

Proposition 1. The magic matrix A = magic(n), where n ≡ 0 mod 4, generated
by MATLAB, given by

ai,j =



(i− 1)n+ j if


i ≡ 0, 1 mod 4 and j ≡ 2, 3 mod 4

or
i ≡ 2, 3 mod 4 and j ≡ 0, 1 mod 4

n2 − (i− 1)n− j + 1 if


i ≡ 0, 1 mod 4 and j ≡ 0, 1 mod 4

or
i ≡ 2, 3 mod 4 and j ≡ 2, 3 mod 4

is of rank three and its nonzero eigenvalues are

s =
n(n2 + 1)

2
,

and ±a where
a =

n

2
√

3

√
n3 − n.

Now we are able to prove the following lemma:

Lemma 2. Let A be an n × n magic matrix, where n ≡ 0 mod 4, generated by
MATLAB, and let C = A2. Then C is symmetric and
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ci,j =



3n5 − 4n4 + 6(i+ j)n3 − 12ijn2 + 6(i+ j)n2 − 2n2 + 3n

12

if


i ≡ 0, 1 mod 4 and j ≡ 2, 3 mod 4

or
i ≡ 2, 3 mod 4 and j ≡ 0, 1 mod 4

3n5 + 4n4 − 6(i+ j)n3 + 12n3 + 12ijn2 − 6(i+ j)n2 + 2n2 + 3n

12

if


i ≡ 0, 1 mod 4 and j ≡ 0, 1 mod 4

or
i ≡ 2, 3 mod 4 and j ≡ 2, 3 mod 4.

.

Proof. We consider four cases:
1. i ≡ 0, 1 mod 4 and j ≡ 2, 3 mod 4

2. i ≡ 2, 3 mod 4 and j ≡ 1, 2 mod 4

3. i, j ≡ 0, 1 mod 4

4. i, j ≡ 2, 3 mod 4.
We will prove case 1 for example. Let i, j be such that i ≡ 0, 1 mod 4 and j ≡ 2, 3

mod 4 and let m = n/4, where n = 4, 8, 12, . . . . Then

cij =

n∑
k=1

aikakj =

m−1∑
k=0

ai(4k+1)a(4k+1)j +

m−1∑
k=0

ai(4k+2)a(4k+2)j

+

m−1∑
k=0

ai(4k+3)a(4k+3)j +

m−1∑
k=0

ai(4k+4)a(4k+4)j

=

m−1∑
k=0

(ai(4k+1)a(4k+1)j + ai(4k+2)a(4k+2)j + ai(4k+3)a(4k+3)j + ai(4k+4)a(4k+4)j)

=

m−1∑
k=0

([(16m2 − (i− 1)4m− 4k)(16km+ j)]

+[((i− 1)4m+ 4k + 2)(16m2 − (4k + 1)4m− j + 1)]

+[((i− 1)4m+ 4k + 3)(16m2 − (4k + 2)4m− j + 1)]

+[(16m2 − (i− 1)4m− 4k − 3)((4k + 3)4m+ j)])

=

m−1∑
k=0

([−64mk2 + (256m3 − 64im2 + 64m2 − 4j)k + 16jm2 − 4ijm+ 4jm]

+[−64mk2 + (−64im2 + 128m2 − 48m− 4j + 4)k + 64im3

−64m3 − 16im2 + 48m2 − 4ijm+ 4(i+ j)m− 12m− 2j + 2]

+[−64mk2 + (−64im2 + 128m2 − 80m− 4j + 4)k + 64im3

−64m3 − 32im2 + 80m2 − 4ijm+ 4(i+ j)m− 28m− 3j + 3]
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+[−64mk2 + (256m3 − 64im2 + 64m2 − 96m− 4j)k

+192m3 − 48im2 + 16jm2 + 48m2 − 4ijm+ 4jm− 36m− 3j])

=

m−1∑
k=0

(−256mk2 + (512m3 − 256im2 + 384m2 − 224m− 16j + 8k)k

+128im3 + 64m3− 96im2 + 32jm2 + 176m2− 16ijm+ 8im+ 16jm− 76m− 8j+ 5).

Applying well known formulas:
n∑

k=1

k =
n(n+ 1)

2
,

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6

we obtain after some calculations:

cij =
768m5 − 256m4 + 96(i+ j)m3 − 48ijm2 + 24(i+ j)m2 − 8m2 + 3m

3
.

Now we replace m by n = 4m and obtain

cij =
768m5 − 256m4 + 96(i+ j)m3 − 48ijm2 + 24(i+ j)m2 − 8m2 + 3m

3

=
768(n

4 )5 − 256(n
4 )4 + 96(i+ j)(n

4 )3 − 48ij(n
4 )2 + 24(i+ j)(n

4 )2 − 8(n
4 )2 + 3(n

4 )

3

=
768
256n

5 − 256
64 n

4 + 96
16 (i+ j)n3 − 48

4 ijn
2 + 24

4 (i+ j)n2 − 8
2n

3 + 3n

12

=
3n5 − 4n4 + 6(i+ j)n3 − 12ijn2 + 6(i+ j)n2 − 2n2 + 3n

12
,

i.e. our formula. Other cases are proved analogously. �

Remark 2. The property in Lemma 2 seems to be unique for magic matrices gen-
erated by MATLAB: by interchanging the second and third columns in the matrix
A = magic(4) we obtain the magic matrix

B =


16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1


whose square is not symmetric.

Corollary 3. Let A = magic(n), where n = 3 or n ≡ 0 mod 4, be a magic matrix
generated by MATLAB. Then Z(A) = σ(A).

3. The numerical range of magic matrices and their powers

In this section we introduce the notion of the numerical range of a square matrix and
consider its properties for magic matrices and their powers. Let S be the Euclidean
unit sphere in Cn and let 〈·, ·〉 denote the standard inner product on Cn. For any
A ∈Mn(C) we define the set
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W (A) = {〈Ax, x〉 : x ∈ S}

to be the numerical range of A. The set W (A) is also known as the field of values
of A. The number

r(A) = sup{|z| : z ∈W (A)}

is called the numerical radius of A.
In the following lemma we collect some basic properties of W (A) and r(A):

Lemma 3. Let A,B ∈Mn(C). Then
(3.1) W (A) is a compact and convex subset of the complex plane.

(3.2) W (U∗AU) = W (A) for every unitary matrix U .

(3.3) W (αA+ βI) = β + αW (A) for α, β ∈ C.

(3.4) W (A+B) ⊂W (A) +W (B).

(3.5) W (A⊕B) = conv(W (A) ∪W (B)).

(3.6) σ(A) ⊂W (A).

(3.7) W (AT ) = W (A), W (A∗) = W (A) := {z̄ : z ∈W (A)}.

(3.8) If A is normal, then W (A) is the convex hull of the spectrum of A.

(3.9) W (A+A∗

2 ) = Re(W (A)), W (A−A∗

2 ) = Im(W (A)).

(3.10) W (A) is a real line segment if and only if A is Hermitian.

(3.11) If A is a 2 × 2 matrix with eigenvalues p, q then the numerical range of
A is an elliptical disc with eigenvalues of A as foci and the minor axis of length√

tr(A∗A)− |p|2 − |q|2.

(3.12) r is a norm and 1
2‖A‖ ≤ r(A) ≤ ‖A‖.

For the proofs of these properties and generalizations of the classical numerical
range we refer the reader to [9], [8] and the references given there. The numerical
radius is a norm but not a matrix norm, i.e. it is not submultiplicative. Moreover, it
may even happen that r(An+m) > r(An)r(Am) (see for example [2]). The numerical
radius however satisfies the following power inequality :

r(An) ≤ r(A)n for all n ∈ N,

proved by Berger [1] in 1965 (for a proof see also [13] and [7]).
The following theorem is an interesting and natural generalization of (3.8); it was
proved by Ky Fan in [4].

Theorem 4. Let A be a bounded linear operator acting on a complex Hilbert space,
let λ, µ be distinct eigenvalues of A, and let x, y be its corresponding eigenvectors:
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Ax = λx, Ay = µy. Then if λ lies on the boundary of the numerical range of A,
then x and y are orthogonal.

Let A be a magic matrix. Then s is an eigenvalue of A and ‖A‖ = s; hence, in
view of (3.6) and (3.12), s always lies on the boundary of W (A). Thus, using the
above theorem, we obtain the following corollary.

Corollary 4. Let A be a magic matrix of order n. Then A is unitarily similar to a
matrix of the form [

s 0

0 K

]
for some K ∈Mn−1(C).

From now on K will denote the lower block of the above matrix.
It may be difficult to say anything about K except two obvious properties:
(3.13) trK = 0.

(3.14) ‖K‖F =
√
‖A‖2F − s2 =

(
n2(n2 + 1)(n2 − 1)

12

)1/2

.

From (3.5) and Corollary 4 we have:

Corollary 5. Let A be a magic matrix. Then W (An) = conv({sn} ∪W (Kn)).

Now we will estimate the numerical range of a magic matrix.

Proposition 2. Let A be a magic matrix. Then the numerical range of A is included
in the convex hull of the set consisting of {s} and the circular disc with center at 0

and radius s/
√

3.

Proof. By Corollary 5 it is sufficient to estimate the numerical range of the matrix
K. We have

r(K)/s ≤ ‖K‖/s ≤ ‖K‖F /s =
1√
3

√
n2 − 1

n2 + 1
<

1√
3
,

which completes the proof. �

Powers of magic matrices are not symmetric in general, but they have the fol-
lowing interesting property:

Proposition 3. Let A be a magic matrix. Then the successive powers of A are
“getting relatively symmetric” in the sense that

‖An − (AT )n‖
‖An‖

→ 0 as n→∞.
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Proof. We have
‖An − (AT )n‖
‖An‖

=
‖An − (A∗)n‖
‖An‖

≤ 2r(An − (A∗)n)

‖An‖
=

2r(Kn − (K∗)n)

‖An‖

≤ 4
r(Kn)

‖An‖
≤ 4

r(K)n

‖An‖
= 4

r(K)n

sn
≤ 4

(
1√
3

)n

→ 0. �

Remark 3. A.Pokrzywa (Institute of Mathematics, Polish Academy of Sciences)
proved a stronger result (personal communication): if A is a square matrix of order
n with positive entries and with equal sums in all columns and rows (denote this
number also by s) then(

1

s
A

)k

→ 1

n

 1 . . . 1
...

...
1 . . . 1

 as k →∞.

Now we turn our attentionback to magic matrices of order 3. It is easy to verify
that all matrices of the form (1) have eigenvalues 15, 2

√
6, −2

√
6 and all matrices of

the form (2) have eigenvalues 15, 2
√

6 i,−2
√

6 i. Using this fact and keepingin mind
that the Frobenius norm is unitarily invariant we obtain the following lemma which
will be useful in the proof of Theorem 5.

Lemma 4. Let A and B be magic matrices of order 3 of the form (1) and (2)

respectively. Then A is unitarily similar to S and B is unitarily similar to T , where

S =

 15 0 0

0 2
√

6 z1
0 0 −2

√
6

 , T =

 15 0 0

0 2
√

6 i z2
0 0 −2

√
6 i

 ,
where |z1| = |z2| =

√
‖A‖2F − 155 − 2(2

√
6)2 = 2

√
3.

Now we are able to describe the numerical ranges of magic matrices of order 3.

Theorem 5. Let A be a magic matrix of order 3.
1) If A is of the form (1) then the numerical range of An is the line segment with

endpoints (2
√

6)n and 15n if n is even, and the convex hull of the set consisting of
{15n} and the elliptical disc with foci −(2

√
6)n and (2

√
6)n and with minor axis of

length 2
√

3 · (2
√

6)n−1 if n is odd.
2) If A is of the form (2) then the numerical range of An is the line segment with

endpoints (2
√

6 i)n and 15n if n is even, and the convex hull of the set consisting of
{15n} and the elliptical disc with foci −(2

√
6)ni and (2

√
6)ni and with minor axis

of length 2
√

3 · (2
√

6)n−1 if n is odd.

Proof. We will prove the first case of our theorem. In view of Corollary 5 it is enough
to find the numerical range of the matrix K. Since the numerical range of a matrix
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of order 2 depends only upon the modulus of the (1, 2) entry, we may assume in
view of Lemma 4 that

K =

[
2
√

6 2
√

3

0 −2
√

6

]
.

We prove by induction that

Kn =

[
(2
√

6)n 0

0 (2
√

6)n

]
if n is even and

Kn =

[
(2
√

6)n 2
√

3(2
√

6)n−1

0 −(2
√

6)n

]
if n is odd.

It remains to apply (3.11) to get our assertion. �
Now we prove the following result.

Theorem 6. Let A be an n× n magic matrix generated by MATLAB, where n ≡ 0

mod 4. Then the numerical range of Ak is the line segment with endpoints ak and
sk if k is even, and the convex hull of the set consisting of {sk} and the elliptical
disc with foci −ak and ak and with minor axis of length ak−1b if k is odd, where

a =
n

2
√

3

√
n3 − n, b =

√
3

6
n
√

(n+ 1)(n− 1)3.

Proof. We will first exhibit the Schur form of the matrix K. Snce A2 is symmetric
(Lemma 2), so is K2. Therefore, in view of Theorem 3, K is unitarily similar to
the direct sum of some blocks S1, S2, . . . , Sm, where Si, i = 1, 2 . . . ,m, are 1× 1 or
2× 2 matrices. Since rankK = 2, only at most two of these blocks, say S1 and S2,
are nonzero. Moreover, we may assume that S1 and S2 are upper triangular. Three
cases are possible:

1. S1 =

[
a b

0 −a

]
, S2 = 0 or vice versa,

2. S1 =

[
a c

0 0

]
, S2 =

[
−a 0

0 0

]
or vice versa,

3. S1 =

[
a c1
0 0

]
, S2 =

[
−a c2
0 0

]
or vice versa,

for a = n
2
√
3

√
n3 − n (Proposition 1) and some b, c, c1, c2.

But K = S1⊕S2⊕ 0⊕ . . .⊕ 0 and K2 is symmetric so, only case 1 may happen.
Let us assume that S1 is a nonzero block. Then W (K) = W (S1) and, in view of
(3.11), it is enough to find the modulus of b to compute the numerical range of K.
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By a trivial calculation we obtain

|b| =
√
‖K‖2F − 2 · |a|2 =

√
3

6
n
√

(n+ 1)(n− 1)3.

Since the numerical range ofK depends only upon the modulus of b; we may consider
only real nonnegative values of b and write b instead of |b|.
Finally, we verify that

Sk
1 =

[
ak 0

0 ak

]
if k is even, and

Sk
1 =

[
ak ak−1b

0 ak

]
if k is odd. It is enough to apply 3.11 and 3.5 to get the assertion. �

4. Open problems

Open problem 1. Describe or estimate the number of magic matrices of order
n (for small values of n some results are known).

Open problem 2. Magic matrices of odd order seem to be of full rank, while
magic matrices of even order seem to have rank strictly smaller than their order. Is
that true in general?

Open problem 3. The magic matrices exhibited in Remark 1.1 and Remark 2.1
have different eigenvalues (apart from s) than matrices of the same order generated
by MATLAB. How much may the eigenvalues of different magic matrices of the same
order differ? May they have an arbitrary phase? Are they always symmetric with
respect to zero (not counting s)?
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MACIERZE MAGICZNE –
POTȨGI, OBRAZY LICZBOWE I OTWARTE PROBLEMY

S t r e s z c z e n i e
W pracy niniejszej rozważamy własności tzw. macierzy magicznych, tj. macierzy o ele-

mentach bȩda̧cych liczbami naturalnymi takimi, że sumy wszystkich wierszy, kulumn oraz
obu głównych przeka̧tnych sa̧ równe. Zajmujemy siȩ własnościami ich potȩg i ich obrazów
liczbowych. Na zakończenie prezentujemy kilka otwartych problemów.

Słowa kluczowe: magiczne macierze, obrazy liczbowe



PL ISSN 0459-6854

B U L L E T I N

DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES DE ŁÓDŹ

2015 Vol. LXV

Recherches sur les déformations no. 1

pp. 49–56

Rafał Zduńczyk

SIMPLE SYSTEMS AND GENERALIZED TOPOLOGIES

Summary
We introduce the notion of a simple system as a generalization of B. Thomson’s local

system. We use it to construct a generalized topology. For a filtering system the construction
leads to a topology (in the classical sense) in which the underlying set is dense-in-itself. We
examine the interplay between local systems and related topologies.
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Let X be a nonempty set. For an A ⊂ X by 2A we denote the power set
of A, i.e. the collection of all subsets of A. A class of collections of subsets of X,
S = {S(x)}x∈X , will be called a simple system provided the following conditions
hold for any x ∈ X:

S1.1. {x} /∈ S(x), S1.2. S(x) 6= ∅,

S2. if S ∈ S(x), then x ∈ S,

S3. if S1 ∈ S(x) and S1 ⊂ S2, then S2 ∈ S(x).

Property 1. Let d : 2X → 2X , d : A 7→ dA, be an operator such that

OP1. dX = X,

OP2. x /∈ d {x},

OP3. if A1 ⊂ A2 ⊂ X, then dA1 ⊂ dA2.
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The collection Sd = {Sd(x)}x∈X defined by

(1) S ∈ Sd(x), when x ∈ S ∩ dS,
is a simple system in X.

Proof. S1 is a consequence of OP1 and OP2. Obviously, S3 follows from OP3, while
S2 is fulfilled by virtue of (1). �

There are two reasons for introducing d here. One is that d leads naturally to
a simple system, the other that it will help us building a counterexample in a quite
general case in the sequel.

Let γ be a nonempty collection of subsets of X. We will call γ a generalized
topology (a g-topology) and (X, γ) a generalized topological space (cf. [2])
provided that

GT1. ∅ ∈ γ,

GT2. if G ⊂ γ, then
⋃
G ∈ γ.

Example 1. At first glance it may seem awkward and artificial to drop the condition
on intersections from the original definition of a topology. However, a surprisingly
natural example of such a structure comes at hand, i.e. so called β-structure (cf. [6],
or semi-open sets in [5], [4] and [1]), defined as

Tβ := {B ⊂ X : B ⊂ T- clT- IntB},
for an arbitrary topology T on X. Tβ is always a generalized topology, and happens
to be a classical topology only when T is extremely disconnected (cf. [6]). Note that
equality of β-structures gives an equivalence relation among topologies (so called
semi-correspondence cf. [4]) and in general does not imply equality of these topolo-
gies, contrary to Corollary 1 in [5]. �

For A ⊂ X by γ-gIntA we denote the generalized γ-interior of A, i.e.
γ-gIntA :=

⋃(
γ ∩ 2A

)
.

Property 2. [cf. [2], Lemma 1.2]. Assume S = {S(x)}x∈X is a simple system in X.
The collection

(2) γS := {G ⊂ X : G ∈ S(x), for all x ∈ G}
is a g-topology in X.

Given γ 6= {∅}, a g-topology in X, define

(3) Sγ0 (x) := {S ⊂ X : x ∈ γ-gIntS} .
Clearly, Sγ0 = {Sγ0 (x)}x∈⋃ γ is a simple system in

⋃
γ provided there are no singletons

in γ (cf. [2], Lemma 1.3). For else, condition S1.1 would not be satisfied. It is an
easy check that by putting
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(4) S′ @ S′′, when S′(x) ⊂ S′′(x), for all x ∈ X,

we introduce a partial order in the class of all simple systems of a given X (cf. [11],
also [7], [8] with a different notation).

A simple system S is called a filtering system (cf. [3], [7]– [8] and [10]– [11])
when

S5. if S1, S2 ∈ S(x), then S1 ∩ S2 ∈ S(x), for x ∈ X.

Theorem 1. Let S be a simple system in X and γS a g-topology defined by (2). We
have S

γS
0 @ S.

If we additionally assume that S is filtering and that

(5) ∀
S∈S(x)

∃
Sx∈S(x)

∀
y∈Sx

Sx ∈ S(y),

then the two systems coincide: S = S
γS
0 .

Proof. Fix x ∈ X and take S ∈ SγS0 (x). We have U ⊂ G for some U ∈ S(x) and
some G ⊂ S for which x ∈ G. Thus S ∈ S(x).

Now assume (5) and let S ∈ S(x). Taking U := Sx ∩ S suffices to complete the
proof by S5. �

Assumption (5) is essential for the relation S @ S
γS
0 , which is clear since S @ SτS0

reads

∀
S∈S(x)

∃
Sx∈S(x)∩2S

∀
y∈Sx

Sx ∈ S(y),

which is even more than (5).
We will use an operator satisfying OP1–OP3 to construct a simple system for

which (5) fails and for which we can explicitly point an S0 ∈ S(x) where S @ SτS0
breaks down.

Example 2. Consider an operator d satisfying conditions OP1–OP3 and such that
for some S0 ⊂ X and x0 ∈ X we have

S0 ∩ dS0 = {x0}.

Then, for a simple system Sd connected with d by means of (1), we can rewrite (2)
as

γSd =

{
G ⊂ X : ∀

x∈G
∃

U∈Sd(x)
U ⊂ G

}
.

Consequently, by (3),

S
γ
Sd

0 (x) =

S ⊂ X : ∃
G⊂S
G3x

∀
y∈G
∃
U⊂G

y ∈ U ∩ dU

 .



52 R. Zduńczyk

Consider S0. Of course, S0 ∈ Sd(x0). We infer that S0 /∈ S
γ
Sd

0 (x0). Indeed, let
x0 ∈ G ⊂ S0. It suffices to show that

∃
x̂∈G
∀
U⊂G

x̂ /∈ U ∩ dU.

We distinguish two cases.

1. If G = {x0}, then for U ⊂ G we have x0 /∈ dU . Therefore, we can put x̂ := x0.

2. Else, there is an x1 6= x0 in G. Let x̂ := x1. We have U ∩ dU ⊂ S∩ dS = {x0}.

Thus, in both cases, x̂ /∈ U ∩ dU . �
One could argue that a much simpler example could be formulated in R with

Euclidean topology and with system defined in example 3 below. The one given
above is nevertheless formulated in a great generality by which it exhibits the most
crucial reason of why (5) is relevant.

Let T be a topology on X making X T-dense-in-itself (i.e. there are no T-isolated
points in X). Any simple system will be refered to as a local system in (X,T) (or
simply a local system , when confusion is unlikely, cf. [3], [7]– [8] and [10]– [11]),
when for any x ∈ X,

S4. if x ∈ U , U ∈ T and S ∈ S(x), then S ∩ U ∈ S(x).

Remark 1. If x0 ∈ T- IntU and {S(x)}x∈X is local, then U ∈ S(x0), by S4.

Remark 2. Requirement on X to be T-dense-in-itself is a sine qua non condition
for existence of a local system in (X,T) for otherwise conditions S4 and S1.1 were
contradictory.

Property 3. Generalized topology τS connected with a filtering system S is a topol-
ogy on X and X is τS-dense-in-itself. Moreover S is local in (X, τS).

Proof. The first part is obvious. Note that condition X ∈ τS is fulfilled even without
filtering assumption.

X is τS-dense-in-itself, for {x} ∈ τS would contradict S1.1.
Let x ∈ U ⊂ G ∈ τS and U , S ∈ S(x). By S5, S ∩ U ∈ S(x) and by S3,

S ∩G ∈ S(x). �

Example 3. LetX be T-dense-in-itself and d the operator assigning to A its T-derived
set. Conditions OP1–OP3 are fulfilled and the system Sd is a (in fact: local) system
in which S ∈ Sd(x) iff x is in S and simultaneously a T-limit point of S (in notation
x ∈ SderT ). This system is the top of lattice of the local systems of a given space
(cf. [11]) and is denoted by ST∞. �
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Example 4. Let X be T-dense-in-itself and T- Int the operator assigning to A its T-
interior. Conditions OP1–OP3 are fulfilled and the system ST- Int is a (in fact: local)
system in which S ∈ ST- Int(x) iff x is in T-IntS. This system is the bottom of lattice
of the local systems of a given space (cf. [11]). Such a system is said to be generated
by T and is denoted by ST0 . �

Corollary 1. If X is T-dense-in-itself and S local in (X,T), then ST0 @ S @ ST∞.

Restriction of the scope to the topological spaces and local systems does not
affect the special role of condition (5), as is shown in the following corollary and
example.

Corollary 2. System ST0 is local in (X,T), filtering and fulfils (5).

Example 5. Assume Ŝ ⊂ X is such that

Ŝ ∩ ŜderT 6= ∅ and Ŝ ⊂
(
X \ Ŝ

)derT
.

There are filtering local systems in (X,T) not generated by any topology.
Fix ẑ ∈ Ŝ ∩ ŜderT . Let

Sẑ(x) :=

{
{S : ẑ ∈ U ∩ Ŝ ⊂ S, for some U ∈ T}, when x = ẑ,

S0(x), else.

It is clear that Sẑ := {Sẑ(x) : x ∈ X} is a filtering local system in (X,T). In order
to prove that Sẑ is not generated by any topology it suffices, by Corollary 2, to find
an S1 ∈ Sẑ(ẑ), so that in every S ∈ Sẑ(ẑ) ∩ 2S1 there is a y such that S /∈ Sẑ(y).
Put S1 := Ŝ ∩ ŜderT and note that ẑ ∈ Ŝ ∩ Û ⊂ S, for some Û ∈ T. Since ẑ ∈ ŜderT ,
y ∈ Ŝ ∩ Û , for some y 6= ẑ. By assumption, y ∈ (X \ Ŝ)derT , hence y /∈ T- Int Ŝ.
Therefore, S /∈ Sẑ(y). �

Remark 3. Let T1 ⊃ T2 be two topologies on X making X a Tj-dense-in-itself set,
for j = 1, 2, respectively. Each local system in (X,T1) is local in (X,T2). However, if
there are

{U1, U2} ⊂ T2 \ {∅, X} such that U1 \ U2 6= ∅,

then there is a T2 ⊂ T1 for which ST20 fails to be local in (X,T1).

Proof. The first statement is trivial, for proof of the latter put T2 := {∅, U2, X}.
Obviously, T2 ⊂ T1 . For x /∈ U2 we have ST2

0 (x) = {X}. ST20 is not local in (X,T1),
since for x ∈ U1 we need U1 ∈ ST2

0 (x), by Remark 1, which fails when x ∈ U1 \U2. �

Example 6. Additionally assuming U2 \ U1 6= ∅ and putting T0 := {∅, U1, X},
with notations of the proof above, we get an interesting but simple example of two
neighbourhood systems STj0 , j = 0, 2, neither of which is local in the topology of the
other. �
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Theorem 2. Local systems Sτ10 , Sτ20 in a fixed (X,T) are comparable in the sense of
relation @ defined by (4) iff the topologies τ1, τ2 are comparable.

Proof. It suffices to show that the relations τ1 ⊂ τ2 and Sτ10 @ Sτ20 are equivalent.
First assume that Sτ10 @ Sτ20 and fix a U ∈ τ1. We have U ∈ Sτ10 (x) ⊂ Sτ20 (x),

for x ∈ U . Hence, for x ∈ U there is a Ux ∈ τ2 such that x ∈ Ux ⊂ U . Therefore
U =

⋃
x∈U Ux ∈ τ2, and the assertion follows.

The converse implication is trivial. �

Corollary 3. The relations Sτ10 = Sτ20 and τ1 = τ2 are equivalent. Moreover SτS0 = S

and τSτ0 = τ .

Note 1. A condition ‘slightly stronger’ than (5) originally appeared in [9], Theorem
4.2, pp. 31–32. The question, whether one can remove quotation marks here or not
seems to an open problem.

Note 2. In [2] author goes even further in generalizing neighbourhood systems,
and requires only one condition, S2 here. Lemmas 1.2 and 1.3 of [2] establish a
correspondence between generalized neighbourhood systems and g-topologies. Thus,
the first part of our Theorem 1 is a straightforward consequence of these.

Note 3. Our notation is a little inconsistent with [7], where the notion of a sim-
ple system coincides with that of a local system from [8]. Nonetheless the author
considers himself excused, as B. Thomson, the inventor of local systems, is equally
inconsistent with his own notation.

Note 4. A parallel theory can be developed with a vicinity system as a starting
point. From such a system we would require the following conditions:

VS1.1. {x} /∈ S(x), VS1.2. S(x) 6= ∅,
VS2. if S ∈ S(x), then S \ {x} ∈ S(x),

VS3. if S1 ∈ S(x) and S1 ⊂ S2, then S2 ∈ S(x).

There is a one to one correspondence between the vicinity systems (here: Sv =

{Sv(x)}x∈X) and the simple systems (here: Ss = {Ss(x)}x∈X), established by the fol-
lowing formulae:

Sv(x) := {S : S ∪ {x} ∈ S(x)}, where {S(x)}x∈X forms a simple system,

Ss(x) := {S ∪ {x} : S ∈ S(x)}, where {S(x)}x∈X forms a vicinity system.

Of course, we have (Sv)s = S and (Ss)v = S.

Note 5. The question about a relation in the spirit of Property 1 but restricted
to local systems is partially answered in [10]. One can get a local system through
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formula (1) providing the operator d : 2X → 2X is such that:

T- IntA ⊂ dA ⊂ AderT , d (A ∩B) = dA ∩ dB,
for A, B ⊂ X.

Note 6. For the operator FS : 2X → 2X considered in [10] and defined as

FS(A) := {x ∈ X : A ∈ S(x)}, for A ⊂ X,
we get one more formula for interior in the topology related to S (cf. properties 2
and 3 here), namely:

τS- IntA =
⋃
{G : G ⊂ A ∩ FSG} .

Note 7. By the very same method as in the proof of Remark 3 we can prove that
neither ST2∞ is local in (X,T1).
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PROSTE SYSTEMY I UOGÓLNIONE TOPOLOGIE

S t r e s z c z e n i e
Wprowadzamy pojȩcie prostego systemu jako uogólnienie systemu lokalnego Thomsona.

Za jego pomoca̧ konstruujemy uogólniona̧ topologiȩ. W przypadku systemu filtruja̧cego
konstrukcja prowadzi do topologii w klasycznym sensie, w której dany zbiór jest w sobie
gȩsty. Badamy zależności miȩdzy systemami lokalnymi i powia̧zanymi topologiami.

Słowa kluczowe: lokalny system, uogólnione topologie
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REMARKS ON ROUND METRIC SPACES

Summary
A metric d is called round if any closed ball Bd[x, r] is a closure of open ball Bd(x, r).

We present theorems concerning space of bounded functions and Hausdorff metric. We also
introduce the notion of strongly not round metric and show that for some metric spaces
(X, d) there exists such metric equivalent to d.

Keywords and phrases: round metric, Hausdorff metric

Let (X, d) be a metric space with at least two points. Let A denotes a closure of
set A. For x ∈ X and r > 0, let

Bd(x, r) = {y ∈ X : d(x, y) < r} and Bd[x, r] = {y ∈ X : d(x, y) ≤ r}.

Definition 1. A metric d is called round if for each x ∈ X and r > 0 we have

Bd(x, r) = Bd[x, r].

We say that a metric space (X, d) is round if metric d is round. Any real or
complex normed vector space with metric induced by norm is round. Subspace X =

(1, 2)∪(3, 4) of R is round with natural metric inherited from R. Any discrete metric
space is not round.

For any metric space (X, d) there exists a metric d1 equivalent to d and not
round. If X = A ∪K is a metrizable space, where A and K are nonempty, disjoint,
closed sets, and K is compact, then no metric for X can be round. For the proofs
we refer the reader to [1].

Let F (X, (Y, d)) be a space of bounded functions from a fixed set X to a metric
space (Y, d). Define metric d̂ by
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d̂(f, g) = sup
x∈X
{d(f(x), g(x))},

for f, g ∈ F (X, (Y, d)). It is easy to check that if (Y, d) is round then space
F (X, (Y, d)) may not by round. It is enough to take Y = (0, 1) ∪ (2, 3), X = (0, 1)

and consider functions f1(x) = x and f2(x) = x+ 2. It is easy to see that

f2 /∈ Bd̂(f1, d̂(f1, f2)).

In this work we give a condition which implies roundness of F (X, (Y, d)). We
show that roundness of metric d is equal to roundness of Hausdorff metric induced
by d. We also introduce a notion of strongly not round metric and show that for
some metric spaces there exists equivalent metric which is strongly not round.

We begin with a few technical lemmas. It is easy to check that.

Lemma 1. Metric d is round if and only if for all x, y ∈ X with x 6= y we have

y ∈ Bd(x, d(x, y)).

Lemma 2. [1] If α ∈ (0, 1) and (X, d) is a metric space such that for all x, y ∈ X
there exists z ∈ X such that

(1) d(z, x) = (1− α)d(x, y) and d(z, y) = αd(x, y),

then d is round.

Lemma 3. Let (X, d) be a metric space satisfying (1). For all R,S, r such that R > 0

and 0 < S < r there exists n0 ∈ N such that for any a, b ∈ X with

S ≤ d(a, b) ≤ r,

there exists b
′ ∈ X such that

d(b, b
′
) < R and d(a, b

′
) < r − 1

n0
.

Proof. By (1) we can create a sequence (zk)k∈N tending to b such that for each n ∈ N
we have d(zn, b) = αd(a, b) Let a pair of natural numbers k0, n0 satisfies

1

Sn0
< αk0 <

R

r
.

Let b
′
= zk0

. Therefore
d(b

′
, b) = αk0d(a, b),

thus

(2) d(b
′
, b) <

d(a, b)R

r
≤ rR

r
= R

and
1

n0
=

S

Sn0
≤ d(a, b)

Sn0
< d(b

′
, b),
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which gives

(3) d(b
′
, a) ≤ (1− αk0)d(a, b) = d(a, b)− d(b

′
, b) < r − d(b

′
, b) < r − 1

n0
.

By (2) i (3) the proof is complete. �

Theorem 1. Suppose that (Y, d) satisfies (1). Metric space F (X, (Y, d)) with a met-
ric d̂ is round if and only if metric d is round.

Proof. Suppose that d is round. Choose f, g ∈ F (X, (Y, d)) with f 6= g. Let r =

d̂(f, g). We will prove that

f ∈ Bd̂(g, d̂(f, g)).

Let ε > 0. We look for a function z ∈ F (X, (Y, d)) such that z ∈ Bd̂(f, ε) and
z ∈ Bd̂(g, d̂(f, g)).

To define a function z, choose numbers S and R satisfying 0 < R < ε and
0 < S < r. By lemma, there exists n0 such that for any a, b ∈ Y with

S ≤ d(a, b) ≤ r,

there is b
′ ∈ Y such that

d(b, b
′
) < R and d(a, b

′
) < r − 1

n0
.

Let x ∈ X. If d(f(x), g(x)) < S, then we put z(x) = f(x). Otherwise, we find y′

satisfying

d(f(x), y′) < R and d(g(x), y′) < r − 1

n0

and put z(x) = y′. Clearly, z is bounded. Moreover, for each x ∈ X we have
d(f(x), z(x)) < R. Thus

(4) d̂(z, f) = sup
x∈X
{d(f(x), z(x))} ≤ R < ε.

Additionally, for any x ∈ X,

d(z(x), g(x)) < max{S, r − 1

n0
}.

Therefore

(5) d̂(z, g) = sup
x∈X
{d(g(x), z(x))} ≤ max{S, r − 1

n0
} < r.

By (4) and (5) we have
z ∈ Bd̂(f, ε)

and
z ∈ Bd̂(g, d̂(f, g)).

Let us now suppose that d̂ is round. We choose a, b ∈ X such that a 6= b.
Let f(x) = a and g(x) = b for x ∈ X. Functions f, g are bounded and so there



60 R. Knapik

exists a sequence (zn)n∈N of bounded functions tending to f and such that zn ∈
Bd̂(g, d̂(f, g)). Let us choose x0 ∈ X and consider the (zn(x0))n∈N. Since

d(zn(x0), a) ≤ d̂(zn, f) for each n ∈ N,

(zn(x0))n∈N tends to a. Moreover, for all n ∈ N we have

d(b, zn(x0)) ≤ d̂(g, zn) < d̂(f, g) = d(a, b).

Thus (zn(x0))n∈N lies in Bd(a, d(a, b)). Consequently,

b ∈ Bd(a, d(a, b)).

Therefore d is round. �

Let (X, d) be a metric space. Let h be the Hausdorff metric defined in the space
of all compact subsets of X by

h(A,B) = max{sup
x∈A
{d(x,B)}, sup

x∈B
{d(x,A)}},

for A,B ∈ C(X).

Theorem 2. The Hausdorff metric h is round if and only if the metric d is round.

Proof. Suppose that d is round. Let F,G ∈ C(X) and ε > 0. Firstly, we will prove
that

(6)
⋃
x∈F

Bd(x, ε) =
⋃
x∈F

Bd(x, ε).

The inclusion ⋃
x∈F

Bd(x, ε) ⊂
⋃
x∈F

Bd(x, ε)

is obvious. If
y0 ∈

⋃
x∈F

Bd(x, ε)

then y0 is a limit of a sequence from⋃
x∈F

Bd(x, ε).

For each n ∈ N we choose xn ∈ X such that yn ∈ Bd(xn, ε). By the compactness of F
there exists x0 ∈ F such that some subsequence {xnk

}k∈N of {xn}n∈N is convergent
to x0. Hence for each k ∈ N we have

d(xnk
, ynk

) < ε and so d(x0, y0) ≤ ε.

Since d is round it follows that

y0 ∈ Bd[x0, ε] = Bd(x0, ε) ⊂
⋃
x∈F

Bd(x, ε).
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Our next claim is that

(7) (G ∈ Bh(F, ε))⇐⇒ (G ⊂
⋃
x∈F

Bd(x, ε) ∧ F ⊂
⋃
x∈G

Bd(x, ε)).

Indeed we have

(G 6⊂
⋃
x∈F

Bd(x, ε)) ∧ (F 6⊂
⋃
x∈G

Bd(x, ε)) ⇔

(∃x1∈G
r1>0

Bd(x1, r1) ⊂ X \
⋃
x∈F

Bd(x, ε)) ∨ (∃x2∈G
r2>0

Bd(x2, r2) ⊂ X \
⋃
x∈G

Bd(x, ε)) ⇔

(∃x1∈G
r1>0

r1 + ε ≤ d(x1, F ) ≤ h(G,F )) ∨ (∃x2∈G
r2>0

r2 + ε ≤ d(x2, G) ≤ h(G,F )) ⇔

G /∈ Bh(F, ε).

In the same manner we can check that

(8) (G ∈ Bh[F, ε])⇐⇒ (G ⊂
⋃
x∈F

Bd[x, ε] ∧ F ⊂
⋃
x∈G

Bd[x, ε]).

From (6), (7), (8) and roundness of d we conclude that

Bh[F, ε] = Bh(F, ε).

Suppose now that h is round and fix two distinct points x, y ∈ X Since {x}
and {y} are compact, there exists a sequence {An}n∈N convergent to {y} such that
An ∈ Bh({x}, h({x}, {y})). Let an ∈ An for each n ∈ N. We have

d(an, y) ≤ sup
a∈An

{d(a, {y})} ≤ max{ sup
a∈An

{d(a, {y})}, d(y,An)} = h({y}, An).

Thus
lim

n→∞
d(an, y) = 0.

Moreover for all n ∈ N we have

d(an, x) ≤ sup
a∈An

{d(a, {x})} ≤ max{ sup
a∈An

{d(a, {x})}, d(x,An)} =

h({x}, An) < h({x}, {y}).

Therefore an ∈ Bd(x, d(x, y)) for any n ∈ N. Consequently,

y ∈ Bd(x, d(x, y))

and d is round. �

The letter proof does not work for the Hausdorff metric defined for all nonempty
and bounded subsets of X. Indeed let X = (0, 1) ∪ (2, 3). Then for each x /∈ (0, 1)

we have d(x, (0, 1)) > 1. Thus for all sets B ⊂ X such that h(B, (0, 1)) < 1, must
be B ⊂ (0, 1). Therefore if we take sequence (An)n∈N convergent to (0, 1), then for
n ∈ N grater then some n0 ∈ N we have An ⊂ (0, 1). We thus get

sup
a∈An

{d(a, (2, 3))} ≥ sup
a∈(0,1)

{d(a, (2, 3))}
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and
sup

x∈(2,3)

{d(x,An)} ≥ sup
x∈(2,3)

{d(x, (0, 1))}.

Therefore
h(An, (2, 3)) ≥ h((0, 1), (2, 3)),

hence
An /∈ Kd̂((0, 1), h((0, 1), (2, 3)))

and consequently
(2, 3) /∈ Bh((0, 1), h((0, 1), (2, 3))).

Now we will give a definition of strongly not round metric space.

Definition 2. We say that (X, d) is strongly not round if for any x ∈ X and R > 0

there exists 0 < r < R such that

Bd(x, r) 6= Bd[x, r].

Theorem 3. Let (X, d) satisfies (1). There exists metric e equivalent to d and
strongly not round.

Proof. Consider a function

f(x) :=

{
C(x), if x ∈ [0, 1],

1, if x ∈ (1,∞).

Where C(x) is a Cantor function. Define

e(x, y) = f(d(x, y)) for x, y ∈ X.

The function e is a metric. We shall prove the triangle inequality. Let {fn}n∈N be a
sequence defined by

f1(x) :=

{
x, if x ∈ [0, 1],

1, if x ∈ (1,∞).
fn+1(x) :=


1
2fn(3x), if x ∈ [0, 13 ],
1
2 , if x ∈ ( 13 ,

2
3 ],

1
2 + 1

2fn(3x− 2), if x ∈ ( 23 , 1],

1, if x ∈ (1,∞).

One can check that {fn}n∈N converges to f . Observe, that for any n, the function fn
on subintervals of [0, 1] is constant or linear (with the same slope on each). Hence,
if a, b ∈ X, a ≤ b, fn then

(9) fn(b− a) ≥ fn(b)− fn(a).

Therefore for all x, y ∈ [0,∞) and n ∈ N

fn(x+ y) ≤ fn(x) + fn(y).
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Applying (9) to b = x+ y and a = x, we obtain

f(x+ y) ≤ f(x) + f(y).

Consequently, for any x, y, z ∈ X,

e(x, y) = f(d(x, y)) ≤ f(d(x, z)+d(z, y)) ≤ f(d(x, z))+f(d(z, y)) = e(x, z)+e(z, y).

Equivalence of metrics is obvious. In order to prove that e is strongly not round
we fix x ∈ X and ε > 0. Let

A = {d(x, y) : y ∈ X}.

From (1) it follows that A is dense in [0, s] where

s = sup{|a− b| : a, b ∈ A}.

Then there exists y ∈ X such that

f(d(x, y)) < ε and d(x, y) ∈ (
1

3n
,
2

3n
)

for some n ∈ N. Therefore

Be(x, f(d(x, y))) = Be(x, e(x, y)) ⊂ Be(x, ε).

Moreover,

Bd(x,
1

3n
) = Be(x, e(x, y)).

Since e and d are equivalent,

Bd(x,
1

3n
) = Be(x, e(x, y)).

Clearly

y /∈ Bd(x,
1

3n
) = Be(x, e(x, y)).

Therefore
Be(x, e(x, y)) 6= Be[x, e(x, y)].

�
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UWAGI O PRZESTRZENIACH METRYCZNYCH
ZAOKRA̧GLONYCH

S t r e s z c z e n i e
Metryka d jest zaokra̧glona wtedy i tylko wtedy, gdy kula domkniȩta Bd[x, r] jest

domkniȩciem kuli otwartej Bd(x, r). W pracy prezentowane sa̧ twierdzenia dotycza̧ce me-
tryki Hausdorffa oraz przestrzeni funkcji ograniczonych. Przedstawione jest pojȩcie metryki
silnie niezaokra̧glonej, a także dowód twierdzenia mówia̧cego, że dla pewnych przestrzeni
metrycznych (X, d) istnieje metryka silnie niezaokra̧glona oraz równoważna d.

Słowa kluczowe: metryka zaokra̧glona, metryka Hausdorffa
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UNIVERSAL TORNADO TUBE

Summary
A few of new experiments with using of the improved tornado tube were described here.

This tube including two plastic, transparent bottles, whose outlets are connected with a
ball valve, applied in water supply networks. After being filled with low-viscosity fluid, this
tube allow to demonstrate the process of generation, dampening and reanimation (self-
excitation) of a tornado. When the fluid is replaced, the tube enables investigation of foam
structure and of motion in viscous medium. If the instrument is filled with non-Newtonian
fluid, the Fano effect may be investigated.

Keywords and phrases: vortex, bottle, fluid, viscosity, tornado, foam, effect Fano

1. Introduction

An experiment entitled “tornado in a bottle” is widely known. This commonness
is indicated by its numerous descriptions on the Internet [1]. In this experiment, a
instrument that is built from two transparent plastic bottles is applied (Fig. 1). One
of the bottles is filled with water. Ends of bottles are directed towards each other
and joined with a pipe or a connector, which may be constructed on one’s own or
bought in a shop with education toys [2]. In order to conduct the experiment, the
bottle filled with water needs to be directed upwards, and the instrument should be
quickly turned (“rotated”) several times around the vertical axis. Then, an effective
vortex, similar to the tornado, will be generated in the upper bottle. This is the
reason why the described instrument is called a “tornado tube”. The aim of this
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article is to demonstrate an improved version of this tube, which allows to conduct
new experiments.

Fig. 1: Construction of the well-known tornado tube;
1, 2 – transparent plastic bottles – upper and lower one,
3 – connector, 4, 5 – water in upper and lower bottle,
6 – surface of the vortex, 7 – water flowing downwards.

2. Construction of the universal tornado tube

Improvement to the tornado tube comprises of application of a ball valve (used in
water supply networks) to join the two bottles. This valve allows to regulate the
fluid’s speed of flow to the lower bottle or to close this flow completely. External
view of the improved tornado tube is presented on Fig. 2 and 3. The instrument
may be constructed from transparent plastic bottles, with capacity of 0.5–2.5 l. The
bottles should present even side surface, without significant narrowings or depths.
The bottles may be joined together with ball valves applied in water supply networks
and adjusted to tubes with diameter of 0.5–2 inches. The most advantageous method
of connection is to join the bottles with the valve in a way that enables them to
become twisted off. This allows to replace the fluid in the tube and bottles easy. For
that purpose, bottle’s caps are connected with the valve permanently, and bottles’
outlet may be twisted into these caps. This method of connecting the caps with the
ball valve is demonstrated on Fig. 4.

Most of the bottles with beverages has a standard outlet with an internal diameter
25mm and external diameter of the cap equal to 32mm. Then, a valve of higher
diameter may be applied, e.g. 1.75 inches, and the caps may be pushed into threaded
valve seats, that are used for connection with pipes of water supply network (Fig. 4a).
Before pushing it into, holes of diameter equal with the diameter of the hole of the
valve’s ball and should be cut out, and the seats should be covered with epoxy glue.
In case of some caps it may be necessary to slightly decrease their internal diameter
or to increase the diameter of the valve’s seat with a file or a scrapper. Another
method of joining the caps with the valve together comprises of cutting out holes in
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them, which will allow to place them on the valve tips (Fig. 4b). External surfaces
of the tips need to be filed beforehand so they have a cylindrical (not hexagonal
shape). What is more, the caps also need to be glued to the valve with epoxy glue.
Additionally, the connection between the caps may be strengthened through rings
cut out from aluminum or plastic sheet and glued inside the caps. The second method
of connection is appropriate if bottles with larger dimension of the end – e.g. from
Nestea drinks (internal diameter of the outlet is 38mm and the external diameter of
the cap is 42mm) – are applied together with a valve that presents lower diameter.
Furthermore, the bottles may be joined permanently to the valve through pushing
their outlets directly into valve seats covered with epoxy glues or sealing and gluing
paste, e.g. Poxilina. A minus of this method is the fact that it is impossible to replace
the fluid, therefore one bottle should be filled with proper liquid beforehand.

Fig. 2: Construction of the universal
tornado tube; 1, 2 – transparent plastic

bottles – upper and lower, 3 – body of the
ball valve, 4 – lever of the ball valve.

Fig. 3: External view of one of the
constructed universal tornado tubes.

Fig. 4: Connection between the ball valve with bottles: a) with caps pushed into, b) with
caps placed on, 1, 2 – transparent plastic bottles – upper and lower, 3 – body of the ball
valve, 4 – ball, 5 – a hole in the ball, 6, 7 – caps of the lower and upper bottles, 8, 9 – rings.
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3. Damping and reanimation tornado

Generation of the tornado in the universal tube takes place in a similar way as
the one described in the introduction. It is worth conducting the first experiments
with a bottle filled with water. Before putting the tube into rotary motion, the ball
valve needs to be completely open (Fig. 5a, 6a). When a stable vortex is generated,
the valve needs to be closed. Then, lower part of the vortex will decay and depth,
which is reached by the vortex, will be decreased. Therefore, vortex walls become
less inclined (Fig. 5b, 6b).

Fig. 5: Formating and dampening of the tornado in the universal tube; 5, 6 – fluid of
low viscosity in the upper and lower bottle, 7 – surface of the vortex, 8 – fluid flowing
downwards, digits 1–4 determine the same elements as on Fig. 2.

Instability of the lower end of vortex (which moves along a wave line) may be
sometimes observed. Upper surface of the fluid may even become almost flat. If after
not a long time the valve was opened, the vortex would appear again without a need
to turn the bottle (Fig. 6c). The described actions may be repeated several times and
the tornado may be reanimated with a decreasing amount of water, until the upper
bottle becomes completely empty. In the next phase of experiment, water needs to
be replaces with fluid of higher viscosity, e.g. oil or glycerin, and then with fluid
of lower viscosity, e.g. ethyl alcohol. After repeating the experiments with fluids
of higher viscosity, it will turn out that it is a way harder to generated a vortex
in such a case. The tube needs to be put in faster rotational motion. When the
valve becomes closed, the generated vortex disappears quicker and it is tougher to
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reanimate it. Reverse regularities are present in case of fluids with lower viscosity.
These experiments prove that in order to provide a stable vortex, fluid needs to flow
in a vertical direction. Owing to that fact, a part of potential energy of the fluid
transforms into its kinetic energy. This compensates dissipation of initial kinetic
energy of the fluid, caused by viscosity forces.

a) b) c)

Fig. 6: Subsequent phases of tornado dampening and reanimation; a) initial tornado, b) tor-
nado damped trough closing the valve, c) reanimated tornado.

4. Shape of the vortex’s free surface

If we accept a frame of reference connected with the fluid in motion, then any element
with mass ∆m is influenced by the following forces: centrifugal force Fr, weights W
and force of viscous resistance (Fig. 7). For the fluid of insignificant viscosity, the
last parameter may be omitted. The free surface of the vortex takes on a form,
for which the resultant of forces Fr and W , i.e. the F force is perpendicular to
this surface in every point [3]. The rotation velocity of fluid increases together with
approaching the lower end of the vortex. This is caused by lowering the radius of
circle, which is followed by the fluid, and transforming a part of a potential energy
of weight into kinetic energy at the time when the fluid flows into the lower part of
the vortex. Precise determination of f(r) function, which describes the shape of the
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vortex free surface with consideration of fluid viscosity, would demand application
of Naiver-Strokes equation which describes motion of viscous fluid [4]. This leads
to a very complicated differential equation, which goes beyond the scope of this
article [5]. Similarly complicated differential equation are required in case using of
Bernoulli’s equation.

Fig. 7: Forces acting at surface of the liquid in
the tornado tube; Fr – centrifugal force, W –
weight, F – resultant force, ∆m – weight of
fluid element.

The situation becomes very simplified when it is assumed that transformation of
the fluid’s potential energy compensates the dissipation of its kinetic energy caused
by viscosity forces [6]. Then, speed of the fluid element on the vortex surface may
be calculated according to the law of angular momentum conservation.

(1) ∆mv1r1 = ∆mvr.

In equation (1) v1 and r1 mean respectively initial speed and radius of the circle,
which is followed by the element of weight ∆m. Centrifugal and weight forces are
expressed in the following formulas:

(2) Fr =
∆mv2

r
,

(3) W = ∆mg.

What is more, the following equation results from Fig. 7.

(4) tanα =
Fr

W
=
dz

dr
.

In result substitution of equation (1) to (2), and next (2) and (3) to (4), the following
differential equation is obtained

(5)
dz

dr
=

(v1r1)2

g

(
1

r3

)
.

Equation (5) is easily solved through direct integration, and the following formula
is obtained

(6) z(r) = − (v1r1)2

2g

(
1

r2

)
+ C.
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Letter C in equation (6) stands for a constant of integration, which depends on the
initial height of fluid column in the upper bottle. It results from equation (6) that free
surface of vortex takes a form of rotary hyperboloid. This result needs to be verified
in case of particular fluid. It may be done through taking a photo of the vortex’s
surface, which was generated during the experiment, measuring value of coordinates
of points on axial section and comparing them with coordinates calculated from the
equation (6).

5. Motion in viscous fluid and foam structure

Universal tornado tube enables generation of single air bubbles that move in viscous
fluid. For that purpose, the tube needs to be put vertically, so one bottle filled with
the investigated fluid of high viscosity, e.g. oil or glycerin, is located at the top. The
ball valve should be closed then. Through partially opening the valve for a short
moment, a slight air bubble is introduced into the upper bottle (Fig. 8).

Fig. 8: Application of the universal tornado tube for in-
vestigation of foam structure and of motion in a viscous
fluid; 5, 6 – shampoo in upper and lower bottle, 7 – air
bubble, 8 – shampoo flowing down, 9 – foam, digits 1–4
determine the same elements as on Fig. 2.

This bubble is influenced by three forces: weight of included air, lift force and force
of viscous resistance, which is expressed with Stokes equation and which is directly
proportional to the velocity. With proper velocity, these forces become compensated,
and the bubble moves with a uniform motion in upward direction. Motion of those
bubbles may also be investigated quantitatively, which allows to determine the fluid
viscosity coefficient. In order to obtain the highest accuracy, possibly high bottles
need to be applied and motion of the bubble should be examined at some distance
from the valve, when its velocity is constant. The upper bottle may be filled with
highly viscous fluid, capable of foam generation, e.g. with shampoo or dishwash.
When the valve is partially open, the air bubbles go through that fluid and generate
foam on its top surface. Gradually, the foam fills the whole upper bottle (Fig. 9).
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Fig. 9: Foam formed in the universal tornado tube after
the shampoo flow.

This foam presents highly regular cells and lasts for several hours, which allows to
investigate its structure. Then, walls that separate the foam cells become thinner as
the fluid flows downwards. The cells burst and connect with each other. This process
starts from the top and the foam slowly disappears. The initial size of the foam cells
and speed of their formation depends on the part, to which the valve is open.

6. Investigation of the Fano effect

Fluids, whose coefficient of viscosity does not depend on the velocity are called
Newtonian fluids [7]. However, there are some fluids that do not meet the mentioned
condition. Such fluids are called non-Newtonian or rheology fluids. Examples of
rheology fluids encompass: honey, suspension of potato starch in water, ketchup and
epoxy resin. They present interesting phenomenas that are not observed in case of
Newtonian fluids. One of such phenomenas is the Fano effect [8]. In order to observe
this effect, one bottle of the tube needs to be filled with synthetic honey. Natural
honey may also be applied, but it is much more expensive, and after some time it
will become solidified as a result of precipitation of sugar (so called sugaring). The
universal tornado tube needs to be placed vertically, so the bottle with honey is on
the top, then the valve should be slightly opened. In such a situation, a slow motion of
a thin trickle of honey towards the lower bottle is observed. This trickle does not flow
perfectly vertically, but firstly it rotates around the cone surface and accumulates
on the honey surface in the lower bottle, and then it melts away. Simultaneously,
motion of air bubbles present in honey located in the upper bottle can be observed.
When the bubble reaches the honey surface in this bottle, outlet of the trickle in
the lower bottle becomes thicker and faster for a short time. This is caused by an
increase of air pressure above the honey surface in the upper bottle. A cause of
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the Fano effect is the fact that there are perpendicular tensions appearing in the
direction of motion.

Fig. 10: Application of the universal tornado tube to in-
vestigation the Fano effect; 5, 6 – non-Newtonian fluid
in the upper and lower bottle, 7 – rotating column of
the fluid, 8 – air bubble, digits 1–4 determine the same
elements as on Fig. 2.

Fig. 11: Fano effect observed in the universal tornado
tube.

7. Conclusions

Important advantages of the described instrument comprise of: low cost of neces-
sary materials, easiness in construction and multi-functionality that allows to use
it for presentation and quantitative investigation of various phenomena. Both pre-
sentations and the investigations can be easily repeated. It is enough to turn the
instrument for 180◦. The fact that the fluid is enclosed in a system of bottles secures
the researchers against getting wet and dirty, which is especially important in case
of using fluid with high viscosity, e.g. oil and shampoo. Therefore, the described
instrument is appropriate for both demonstration of physical phenomena and labo-



74 S.Bednarek

ratory research during classes with students. Theses demonstrations may also have
interactive character, and they may be carried out by persons, who visit the science
festivals, open laboratories and science picnics.
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UNIWERSALNA RURA TORNADO

S t r e s z c z e n i e
Opisano budowȩ przyrzadu złożonego z dwóch plastikowych, przezroczystych butelek,

których wyloty poła̧czone sa̧ zaworem kulowym, używanym w instalacjach wodociagowych.
Po napełnieniu ciecza̧ o małej lepkości przyrza̧d ten pozwala pokazać wytwarzanie i tłumie-
nie tornada oraz jego samoistne wzbudzanie siȩ. Po wymianie cieczy przyrza̧d umożliwia
badanie ruchu w ośrodku lepkim oraz struktury piany. Gdy przyrza̧d zostanie napełniony
ciecza̧ nienewtonowska można badać efekt Fano.

Słowa kluczowe: wir, butelka, płyn lepki, tornado, piana, efekt Fano
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INVESTIGATION OF CORRELATION BETWEEN COEFFICIENTS
OF SURFACE TENSION AND VISCOSITY IN FERROFLUIDS

Summary
A stalagmometer placed in Helmholtz coils was constructed together with a capillary

viscosimeter, equipped with an exchengeable solenoid and electromagnet. Through these
instruments, dependence of the coefficient of surface tension, coefficient of viscosity of the
ferrofluid from the induction of magnetic field within range of 0–80mT were investigated.
The examinations were performed in temperatures 15◦C and 26◦C for different degrees of
dilutions of the ferrofluid. High interdependence between values of coefficients of surface
tensions and viscosity was detected in both temperatures for magnetic induction directed
parallelly and perpendicularly towards direction of the ferrofluid’s flow.

Keywords and phrases: ferrofluid, surface tension, viscosity, magnetic field, coupling

1. Introduction

Ferrofluids are suspensions of ferromagnetic or superparamagnetic particles of nano-
meter dimensions in a dispersive liquid. In order to provide stability of the suspen-
sion, the particles are coated with a layer of a surfactant, which prevents aggregation
of particles’ sedimentation [1, 2]. Because of unique combination of liquid qualities
and strong reaction with a magnetic field, ferrofluids found numerous applications,
among others in clutches, bearings, measurement instruments or image diagnostics
[1, 3]. New applications of ferrofluids, e.g. in printers or cancer therapy are planned
[4]. Because of that, careful knowledge of ferrofluids’ properties is of significant mean-
ing also for broadening the scope of the materials’ application. Results of research
on magnetic field’s influence on the viscosity of ferrofluids are known as well as
the results of separately performed studies over balance of ferrofluids’ drops in a
magnetic field [5–9]. This article demonstrates results of the research of changes in
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both viscosity and surface tension of ferrofluids in a magnetic field. The performed
research showed strict interdependence of these quantities.

2. Measurement method

The coefficient of the ferrofluid’s surface tension was determined through a magnetic
stalagmometer of self made construction, Fig. 1, Photo 1. In this instrument, the fer-
rofluid flow out a vertical tube, equipped with a valve and a capillary. At the lower
end of the capillar, drops of the ferrofluid were formed. Speed of the drops formation
was controlled by using the valve. The drop detached from the lower end of the cap-
illar, when its dimensions increased to properly high values. For those values, weight
of the drop exceeded strengths of the surface tension, influencing the circumference
of the narrowest part of the drop, Fig. 2. The tube with the ferrofluid was located
in the middle part of the Helmholtz coils system, which enabled production of a
homogenous magnetic field, of 0–80mT induction. Induction value of this field was
measured with a hallotron teslameter.

A known method of determining the coefficient of surface tension σ through a
stalagmometer, consists in an assumption that upon detachment, the drop is of
spherical shape, and in comparison of its weight W with strength of surface tension
Fn [10]. Deviation from the spherical shape caused by necking is taken into consider-
ation by introducing a corrective coefficient, whose value depends on the relation of
the capillar’s diameter to the drop’s diameter, and it is provided in the special tables.
In the magnetic field, shape of the drop differed significantly from the spherical one,
Fig. 3, Photo 2. Because of that, it was necessary to apply own method. It consisted
in the fact that creation of the drop was filmed. A photography representing a drop
just before it detached was chosen. The photograph was enlarged by 80 times, and
on that basis a drawing of a factual size of the drop on an axial plane was prepared.
This profile was divided into horizontal stripes, each ∆h = 1mm wide, and their
lengths were measured, Fig. 4. Half of length of every stripe equaled the ri radius,
an elementary cylinder of volume ∆Vi, which the drop was divided into. Results
from those measurements were used to calculate a complete volume V of the drop,
according to the formula

(1) V = π∆hi

n∑
i=1

r2i .

Strength of the surface tension Fn and weight of the drop W are expressed by the
following formulas:

(2) Fnb = 2πrpσ,

(3) W = ρgV.

On the basis of formulas (1–3) to the condition Fn = W , a formula for the coefficient
of surface tension σ was received
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Fig. 1: Structure of a magnetic stalagmometer; 1 – a vertical tube, 2 – ferrofluid in
a tube, 3 – a tube’s holder, 4 – a valve, 5 – a capillary, 6 – a ferrofluid’s drop, 7 – a
tube’s bracket, 8 – a stalagmometer’s base, 9 – a measuring cylinder, 10 – ferrofluid in the
measuring cylinder, 11 – upper coil, 12 – base of the upper coil, 13 – lower coil, 14 – base
of the lower coil, 15, 16 – coils’ supports, 17 – common base of coils, U – voltage of supply,
B – induction of the magnetic field.

Photo 1: General view of the stalagmometer placed in Helmholtz,s coils.
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Fig. 2: Forces holding the hanging drop in balance; Fn –
force of the surface tension, W – weight of the drop, rp –
necking radius.

Fig. 3: Shape of the ferrofluid’s drop: a) without a magnetic field, b) in a magnetic field;
1 – capillary, 2 – ferrofluid in the tube, 3 – ferrofluid’s drop, 4 – necking before the drop’s
detachment, rk – external radius of the capillary, rp – necking radius, r – drop’s radius,
B – induction of the magnetic field.

Photo 2: An example of change of shape of the ferrofluid’s drop in a magnetic field: a) with-
out the magnetic field, b) in the magnetic field of induction 60mT.
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Fig. 4: A method of volume calculation of the ferrofluid’s
drop; ri – layer’s radius, ∆h – layer’s height, ∆Vi – layer’s
volume, rp – necking radius,H – drop’s height, V – drop’s
volume.

(4) σ =
ρg∆h

2rp

n∑
i=1

r2i .

In the formula (4) g means gravitational acceleration, and ρ means density of the
ferrofluid.

In aim to determine coefficients of the ferrofluid’s viscosity, capillar viscosimeter
of own construction was used, where the magnetic field was applied in a parallel
or perpendicular direction towards the direction of the ferrofluid’s flow, Figs. 5, 6,
Photos 3, 4. Thanks to that, it was possible to determine two coefficients of viscos-
ity η1, η2, corresponding with parallel and perpendicular application of the field. A
Mariotte’s bottle, consisting of a controlling pipe 3 and a cork 4, placed in a vertical
tube 1 filled with the ferrofluid 2. It allowed to maintain the agreed value of pressure
and speed of the ferrofluid’s flow, while its level was above the lower end of the
controlling pipe. The flow speed was determined by moving the controlling pipe 3
in the cork 4. Flow of the ferrofluid in the viscosimeter was laminar and it may be
described with the Hagen-Poisuille’s formula. In a general case, this formula has the
following form

(5) V =
πr4∆pt

8lη
=

∆pt(
8lη
πr4

) .
Meaning of the symbols in the formula (5) is the following: V – volume of the
flowing fluid, t – time of the flow, ∆p – difference of pressures between the ends of
the capillary 6, which causing flow of ferrofluid, η – fluid viscosity coefficient, l, r –
respectively: length and radius of the tube. Expression ((8lη/πr4 in the formula (5)
plays a role of hydraulic resistance. In the constructed viscosimeter there are also
two segments of a capillary 6 with l1, l2 lengths, along which there is no magnetic
field, and ferrofluid’s viscosity on that segments equals η0, Fig. 7. These segments
also cause hydraulic resistance, which is why the Hagen-Poisuille’s formula for the
constructed viscosimeter has the following formula:

(6) V =
∆pt

8lη1,2
πr4w

+ 8l(l1+l2)η0
πr4w

.
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Fig. 5: Structure of a capillary viscosimeter with longitudinal magnetic field and a Mariotte’s
bottle; 1 – vertical tube, 2 – ferrofluid in the tube, 3 – controlling pipe, 4 – cork, 5 – valve,
6 – capillary, 7 – holder of the vertical tube, 8, 9, 10 – brackets, 11 – base, 12 – ferrofluid’s
flow, 13 – measuring cylinder, 14 – ferrofluid in the measuring cylinder, 15 – ferrofluid in
the capillary, 16 – spool of solenoid, 16 – winding of the solenoid, U – voltage of supply,
B – induction of the magnetic field.

Fig. 6: Structure of a capillary viscosimeter with a transversal magnetic field and a Mari-
otte’s bottle; numbers 1–15 – are of the same meaning as in the Fig. 5 caption, 16 – frame
of coils, 17 – electromagnet’s winding, 18 – electromagnet’s core, 19, 20 – horizontal pole
shoes, 21, 22 – vertical pole shoes, 23 – electromagnet’s support, U – voltage of supply,
B – induction of the magnetic field.
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Photo 3: General view of the viscosimeter with longitudinal magnetic field and a Mariotte’s
bottle.

Photo 4: General view of the viscosimeter with transversal magnetic field and a Mariotte’s
bottle.

Fig. 7: Parameters of a capillary vis-
cosimeter with magnetic field and a
Mariotte’s bottle: a) basic dimen-
sions, b) spatial distribution of in-
duction of the magnetic field along
the capillary; h – effective height of
the ferrofluid’s column, rw – inter-
nal radius of the capillary, l – length
of the segment of the capillary with
an effective magnetic field, l1, l2 –
lengths of segments of the capillary
without the magnetic field, B – in-
duction of the magnetic field, v – ve-
locity of flow, 0x – coordinate axis.
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In the formula (6) η1,2, mean the viscosity coefficient of the ferrofluid for a magnetic
field directed, respectively: in parallel or perpendicularly to the direction of the flow,
rw – internal radius of the capillary 6, where the ferrofluid flows. To simplify further
discussion, η1 will be called as a coefficient of longitudinal viscosity, and η2 – as a
coefficient of transversal viscosity. The difference of pressures, causing flow of the
ferrofluid is expressed with the formula

(7) ∆p = ρgh,

where h means a distance from the lower end of the controlling tube 3 to the axis
of the capillary 6. After substituting the formula (6) to (5) and transformation, the
following formula for the ferrofluid’s viscosity coefficient in a magnetic field were
obtained:

(8) η1,2 =
πr4ρght

8lV
−
(
l1 + l2
l

)
η0.

The formulas (4) and (8) were applied to determine coefficients of surface tension
and the ferrofluid’s viscosity.

For the research, a ferrofluid containing of Fe3O4 magnetite’s particles with di-
mensions of 10–20 nm, obtained by a method of chemical polycondensation was ap-
plied. This method consists in production of particles from a mixture of iron chloride
solutions with different valences in a result of their alkalization [2]. The produced
particles were dispersed in mineral oil. A surfactant, preventing agglomeration of
particles was oleic acid. Content of iron in the ferrofluid constituted 6.15% of its
weight, and it was determined with a method of an X-ray microanalysis. Density
of the ferrofluid was 1.21 g/cm3. In the research the ferrofluid without dilution and
solutions of the ferrofluid obtained through adding 30% or 60% of the diluter – a
mixture of toluene and acetone – was used. The volume proportion of toluene and
acetone in the diluter was 7 : 3. All investigation were made in the magnetic field with
the induction changed within the range of 0–80mT and two temperatures 15◦C and
26◦C. The results obtained in described investigations are presented on Figs. 8–13.

3. Discussion of results

In all series of the measurements, significant increases of coefficients of viscosity and
surface tensions were detected in the investigated ferrofluids, caused with a growth
of induction of the magnetic field within the range of 0–80mT. For example, in the
temperature of 26◦C, coefficient of the surface tension of the undiluted ferrofluid,
without a magnetic field was 38 ± 2mN/m, and in the magnetic field with induc-
tion of 80mT, it increased to 75 ± 4mN/m, i.e. 1.97 times, Fig. 8. The coefficient
of longitudinal and transversal viscosity without the magnetic field, in the same cir-
cumstances was, respectively 126±7mPa · s and 124±7mPa·s, Figs. 10, 12. It means
equality of those coefficients within boundaries of an measurement error, and lack
of anisotropy of the ferrofluid’s viscosity.
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Fig. 8: Dependence of coefficients of
surface tension σ of the ferrofluid on
induction of the magnetic field B for
various concentration levels d in the

temperature t = 15◦C.

Fig. 9: Dependence of coefficients of
surface tension σ of the ferrofluid on
induction of the magnetic field B for
various concentration levels d in the

temperature t = 26◦C.

Fig. 10: Dependence of horizontal viscosity
coefficients η1 of ferrofluid on induction of the
magnetic field B for different concentration

levels d in temperature t = 15◦C.

Fig. 11: Dependence of horizontal
viscosity coefficients η1 of ferrofluid on
induction of the magnetic field B for
different concentration levels d in

temperature t = 26◦C.
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Fig. 12: Dependence of horizontal viscosity
coefficients η2 of ferrofluid on induction of the
magnetic field B for different concentration

levels d in temperature t = 15◦C.

Fig. 13: Dependence of horizontal
viscosity coefficients η2 of ferrofluid on
induction of the magnetic field B for
different concentration levels d in

temperature t = 26◦C.

After applying a magnetic field with induction of 80mT, coefficient of the longi-
tudinal viscosity was 250 ± 14mPa·s, and the coefficient of the transversal viscosity
was 500± 25mPa·s, Figs. 10, 12. This mean an increase by 2 and 4.2 times, and sig-
nificant anisotropy of the ferrofluid’s viscosity in the magnetic field. The anisotropy
consists in higher increasing of the transversal viscosity coefficient than the longitu-
dinal viscosity coefficient for the same increasing of the magnetic field’s induction.
The increase of the ferrofluid’s viscosity coefficient in the magnetic field was detected
previously by other researchers, and results of this work are similar with previous
ones [11–14].

Dependencies of coefficients of surface tension and viscosity from induction of the
magnetic field shows of nonlinear character. This nonlinearity consists in the fact
that in the initial range of the magnetic field’s induction of 0–20mT, increases of
these coefficients are higher than in the final range of induction changes 60–80mT.
The nonlinear dependencies of coefficients are analogical with curves that present
dependency of magnetization of a ferromagnetic or superparamagnic materials on
induction of the applied magnetic field. Lower increases of coefficient in the final
ranges of induction changes are caused by the fact that for induction of the magnetic
field in the range 100–200mT, magnetization of ferrofluids achieve a saturation level
[1, 2].

Addition of a solvent caused a decrease in coefficients of both surface tension and
viscosity. For example, after adding a 60% solvent in the temperature of 26◦C, the
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coefficient of surface tensions decreased from 38 ± 2mN/m to 31 ± 2mN/m, Fig. 7.
The longitudinal and transversal viscosity coefficients decreased as a result of dilution
as follows: 126±7mPa·s to 50±7mPa·s and 124±7mPa·s also to 50±7mPa·s, and
were equal within limits of a measurement error, Figs. 10, 12. These results shows
conservation of anisotropy of the ferrofluid’s viscosity without the magnetic field, also
after its dilution. The detected changes are caused by the fact that the diluter has
a lower surface tension and viscosity coefficients than the ferrofluid [15]. Lowering
proper coefficients of the ferrofluid was proportional to the diluter’s content. The
detected changes comply with expectations because in the mixture of fluids that
chemically do not react with each other, the mixture’s viscosity coefficient is directly
proportional to the components and their coefficients of viscosity [16]. These results
are also analogical to the results from previous investigation [17–19].

The research repeated in the temperature of 15◦C showed than lowering temper-
ature will cause an increase of the surface tension coefficient and coefficients of longi-
tudinal and transversal viscosity of all ferrofluids. For example, a coefficient of surface
tension of a non-diluted ferrofluid increased from 38±2mN/m to 43±2mN/m, and
the coefficient of longitudinal and transversal viscosity increased respectively from
126± 7mPa·s to 152± 8mPa·s and from 124± 7mPa·s to 152± 8mPa·s, Figs. 8–13.
The provided values refer to a situation without a magnetic field. After applying
the magnetic field, similar increases of proper values took place. These results also
comply with expectations, because termodynamics’ predictions and results of other
investigations suggest that coefficients of surface tension and viscosity decrease to-
gether with an increase of temperature. Value of the surface tensions coefficient equal
zero in the critical temperature, when the difference between a liquid and a gas phase
disappears [16, 18].

The most significant and a new result of the made investigations is detection of
coupling of surface tension and viscosity coefficients. Obtained curves presenting that
the dependence of surface tension and viscosity coefficients shows very similar shape.
In order to compare them, coefficients of linear correlation were calculated between
series of values of both coefficients. The obtained values of correlation coefficients are
collected in Tab. 1 and 2. All obtained values of correlation coefficients are significant
on the level of confidence α = 0.95. A reason for these correlation lays in changes
of the ferrofluid’s structure caused by influence of the applied magnetic field to the
magnetite’s particles. Before application of the magnetic field, spatial distribution
of particles in the ferrofluid was disordered, Fig. 14. In such a situation the ferrofluid
acted similarly to Newtonian fluids. The ferrofluid’s flow took place with relatively
small resistances to motion. The ferrofluid’s viscosity coefficient is permanent then
and it is expressed with the Einstein’s formula

(9) ηf = η

(
1 +

5

2
ϕ

)
,

where ηf – ferrofluid’s viscosity, η – dispersive liquid’s viscosity, ϕ – a filling factor
of the ferrofluid’s volume by particles (ϕ� 1) [20].
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Fig. 14: Ferrofluid’s structure: a) without magnetic field, b) after applying the magnetic
field; 1 – magnetite’s particle, 2 – a surfactant, 3 – a dispersion liquid, B – induction of the
magnetic field.

Tab. 1: Set of correlation coefficients r between coefficients of surface tension σ and lon-
gitudinal and transversal viscosity coefficients η1, η2 of a ferrofluid with various stages of
dilution d in the temperature t = 15◦C, critical value of the correlation coefficient rαk is
0.62 at the confidence level α = 0.95.

Dilution Coefficient of correlation r between:
d(%) σ and η1 σ and η2

value significance value significance
0 0.96 yes 0.95 yes
30 0.94 yes 0.93 yes
60 0.97 yes 0.95 yes

Tab. 2: Set of correlation coefficients r between coefficients of surface tension σ and lon-
gitudinal and transversal viscosity coefficients η1, η2 of a ferrofluid with various stages of
dilution d in the temperature t = 26◦C, critical value of the correlation coefficient rαk is
0.62 at the confidence level α = 0.95.

Dilution Coefficient of correlation r between:
d(%) σ and η1 σ and η2

value significance value significance
0 0.92 yes 0.97 yes
30 0.94 yes 0.93 yes
60 0.93 yes 0.95 yes
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Application of the magnetic field led to magnetization of particles and induction
of dipole moments within them. Mutual interaction of those dipoles caused rota-
tions and shifts of the particles. As a result, the particles approached each other
in a way that opposite poles of dipoles was possibly close to each other, and the
homogeneous poles were as far as possible. As a result, the particles were grouped
in chains directed along the direction of the applied magnetic field. Between some
chains present close to each other, so called bridges could be formed of diagonally
or perpendicularly directed chains of particles. In this manner is created a more
ordered chain’s structure of the ferrofluid, described for the first time by Winslow
[21]. This structure also results from the particles’ distribution tend to minimum of
free energy in the magnetic field.

After forming an ordered structure, the ferrofluid’s flow is significantly slower,
because its motion is inhibited through chains of particles interacting with each
other. To cause the ferrofluid’s movement along the magnetic field, it is necessary
to translate these chains towards each other. In turn, to cause the ferrofluid flow
perpendicularly to the magnetic field, it is mainly necessary to shear the chains of
particles. In the second case, influence of greater forces is indispensable. Therefore,
the transversal viscosity coefficient is higher than the longitudinal viscosity coeffi-
cient. What is more, chains of particles directed along the magnetic field may hold a
bigger ferrofluid’s drop. These chains appear not only on the surface of the hanging
drop but in its whole cross-section. Before detachment of the drop it is necessary to
disrupt these chains. It requires properly significant force, hence an increase of the
ferrofluid’s surface tension coefficient was observed, Fig. 15.

Fig. 15: Influence of the magnetic field on the change of
the surface tension coefficient; Fn1 – force of the surface
tension, W1 – weight of the drop, rp1 – necking radius,
the dashed line marks shape of the drop before applying
the field, B – induction of the magnetic field.

A conclusion drawn here that in order to cause flow of the ferrofluid and to gen-
erate the drop it is necessary to disrupt the particles’ chains. Both phenomena have
a common cause, which is why a strict correlation between the viscosity coefficients
and ferrofluid’s surface tension was observed. Furthermore, the process of creation,
shape and size of the ferrofluid’s drop placed in the magnetic field undergo not only
to interaction of the particles of the dispersion fluid and magnetite’s particles on the
ferrofluid’s surface. Influence of chains of magnetite’s particles on the surface of the
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whole drop’s cross-section is important. This situation significantly differentiates the
process of generation of the ferrofluid’s drop in the magnetic field from the gener-
ation process of drops of other fluids or the ferrofluid’s drop without the magnetic
field. Results of the made investigations also suggest that there is a need to define the
coefficient of surface tension of a ferrofluid in a magnetic field in a different manner.
This definition should also take into account influence of the column’s cross-section
field or the ferrofluid’s layer.
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BADANIE KORELACJI MIȨDZY WSPÓŁCZYNNIKAMI NAPIȨCIA
POWIERZCHNIOWEGO I LEPKOŚCI FERROFLUIDÓW

S t r e s z c z e n i e
Zbudowano stalagmometr umieszczony w cewkach Helmholtza oraz wiskozymetr prze-

pływowy, wyposażony w wymienny solenoid i elektromagnes. Za pomoca̧ tych przyrzadów
zbadano zależność współczynnika napiȩcia powierzchniowego i współczynnika lepkości fer-
rofluidu od indukcji pola magnetycznego w zakresie 0–80mT. Badania przeprowadzono
w temperaturach 15◦C i 26◦C dla różnych stopni rozcieńczenia ferrofluidu. Wykryto wysoka̧
współzależność miȩdzy wartościami współczynników napiȩcia powierzchniowego i lepkości
w obu temperaturach dla indukcji magnetycznej skierowanej równolegle, jak również prosto-
padle do kierunku przepływu ferrofluidu.

Słowa kluczowe: ferrofluid, napiȩcie powierzchniowe, lepkość, pole magnetyczne





PL ISSN 0459-6854

B U L L E T I N

DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES DE ŁÓDŹ

2015 Vol. LXV

Recherches sur les déformations no. 1

pp. 91–100

Magdalena Skrzypiec

DIFFERENTIAL EQUATIONS FOR SECANTOPTICS

Summary
The set of intersection points of appropriate pair of secants to a given oval C form

a curve which we called a secantoptic Cα,β,γ of an oval C. In [14], [9], [10] and [11] we
proved many properties of secantoptics and we found relations between notions of secan-
toptics, evolutoids, hedgehogs and isoptics of a pair of curves. In this paper we present
some differential equations connected to secantoptics.

Keywords and phrases: isoptic curve, secantoptic, envelope

1. Introduction

In this paper a plane, closed, simple, strictly convex, smooth curve C we call an
oval. Let us introduce a coordinate system with the origin O in the interior of C
and denote by p(t), where t ∈ [0, 2π), the support function of the curve C. As it was
shown in [13] this support function is differentiable and C can be parametrized by

(1.1) z(t) = p(t)eit + ṗ(t)ieit for t ∈ [0, 2π).

Note that for any oval C we have p(t) + p̈(t) > 0 for t ∈ [0, 2π) and the expression
R(t) = p(t) + p̈(t) is the radius of curvature of C.

Considered notion of a secantoptic is a generalization of the notion of isoptic
curve known since 18th century. For α fixed in the interval (0, π) the isoptic Cα of
C is a set of points from which the oval C is seen under the angle α. The equation
of Cα is (see [3])

(1.2) zα(t) = p(t)eit + {−p(t) cotα+
1

sinα
p(t+ α)}ieit, t ∈ [0, 2π),

where p(t) denotes the support function of C. Let us recall the notion of a secantoptic.



92 M. Skrzypiec

Fig. 1: A parametrization of a convex curve with a support function.

Let C be an oval and let

β ∈ [0, π), γ ∈ [0, π − β) and α ∈ (β + γ, π)

be fixed angles. By l1(t) we denote the tangent to C at z(t). Let us rotate l1(t)
arround z(t) through an angle −β. Such obtained secant of C we denote by s1(t).
Similarly let l2(t) = l1(t + α − β − γ) be the tangent to C at z(t + α − β − γ). By
s2(t) we denote the secant to C obtained by rotation of l2(t) arround the tangency
point through an angle γ. Then s1(t) and s2(t) intersect forming the angle α.

Definition 1.1. The set of points zα,β,γ(t) of intersection of secants s1(t) and s2(t)
to the oval C for t ∈ [0, 2π] forms a curve Cα,β,γ which we call a secantoptic of an
oval C.

If we introduce the following notation

q(t) = z(t)− z(t+ α− β − γ),
b(t) = [q(t), eit],

B(t) = [q(t), ieit],

q(t) = (B(t)− ib(t))eit,

λ(t) =
b(t) sin(α− β)−B(t) cos(α− β)

sinα
,(1.3)

µ(t) = −b(t) sinβ +B(t) cosβ

sinα
,(1.4)

where [v, w] = ad− bc for v = a+ bi and w = c+ di, then the parametrization of a
secantoptic Cα,β,γ of an oval C can be written as
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Fig. 2: Construction of a secantoptic of an oval.

zα,β,γ(t) = (p(t) + λ(t) sinβ + i(ṗ(t) + λ(t) cosβ))eit for t ∈ [0, 2π).

Let us notice that

λ(t) =
1

sinα
(−p(t) cos(α− β)− ṗ(t) sin(α− β) + p(t+ α− β − γ) cos γ +

(1.5)

+ ṗ(t+ α− β − γ) sin γ),

µ(t) =
−1
sinα

(p(t) cosβ − ṗ(t) sinβ − p(t+ α− β − γ) cos(α− γ) +

(1.6)

+ ṗ(t+ α− β − γ) sin(α− γ)).

We can compute

∂b(α, t)

∂α
= R(t+ α− β − γ) cos(α− β − γ),(1.7)

∂B(α, t)

∂α
= R(t+ α− β − γ) sin(α− β − γ),(1.8)

∂λ(α, t)

∂α
=

1

sinα
(R(t+ α− β − γ) sin γ − µ(t)).(1.9)



94 M. Skrzypiec

∂λ(α, t)

∂t
=

1

sinα
(b(t) cos(α− β) +B(t) sin(α− β)−R(t) sin(α− β) +

(1.10)

+ R(t+ α− β − γ) sin γ).

2. Differential equations

In this section we will prove some differential equations connected to secantoptics
which are a generalization of equations derived for isoptics in [4]. Obtained results
can be useful in further studies on evolutions of plane convex curves. The evolutions
of plane curves were examined for example in papers [2], [5], [6], [7], [8] and [12].

Theorem 2.1. Let C be an oval with a support function p(t). Let

(2.1) t 7→ zα,β,γ(t) = (p(t) + λ(α, t) sinβ + i(ṗ(t) + λ(α, t) cosβ))eit

be a secantoptic of an oval C. Then the function λ(α, t) satisfy the following equation

(2.2)
∂λ

∂α
− ∂λ

∂t
+ λ(α, t) cotα = R(t)

sin(α− β)
sinα

.

Moreover, λ(β + γ, t) = 0 and λ(−, t) is increasing function.

Proof. Using formulas (1.9) and (1.11) we have

∂λ

∂α
− ∂λ

∂t
= −λ(α, t)cosα

sinα
+R(t)

sin(α− β)
sinα

,

hence the equation (2.2) is satisfied. If β+γ 6= 0, then from the formula (1.5) we get

λ(β + γ, t) =
1

sin(β + γ)
(−p(t) cos γ − ṗ(t) sin γ + ṗ(t) sin γ + p(t) cos γ) = 0.

If β+γ = 0, then Cα,β,γ is the isoptic. For isoptics it is known, see [4], that λ(0, t) = 0.
The function λ(−, t) is increasing if and only if ∂λ∂α > 0, what we will show. Since

∂λ

∂α
=

1

sinα
(R(t+ α− β − γ) sin γ − µ(t)) = −M(t)

sinα
> 0

from the construction of secantoptics of ovals, then λ(−, t) is increasing function. �

Theorem 2.2. Let C be an oval with a support function p(t). Let

t 7→ zα,β,γ(t) = (p(t) + λ(α, t) sinβ + i(ṗ(t) + λ(α, t) cosβ))eit

be a secantoptic of an oval C. Then the function µ(α, t) satisfy the following equation

(2.3)
∂µ

∂α
+ µ(α, t) cotα = −R(t+ α− β − γ) sin(α− γ)

sinα
.

Moreover, µ(β + γ, t) = 0.
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Proof. Using formulas (1.4), (1.7) and (1.8) we get
∂µ

∂α
=

1

sinα
(−µ(α, t) cosα−R(t+ α− β − γ) sin(α− γ)),

what proves the equation (2.3). If β + γ 6= 0, then from the formula (1.6) we get

µ(β + γ, t) =
1

sin(β + γ)
(−p(t) cos γ + ṗ(t) sin γ − ṗ(t) sin γ + p(t) cos γ) = 0.

If β + γ = 0, then to the limit limα→(β+γ)+ µ(α, t) we apply de l’Hospital’s rule and
we obtain

lim
α→(β+γ)+

[
− 1

cosα
(−ṗ(t+ α− β − γ) cos(α− γ) + p(t+ α− β − γ) sin(α− γ) +

+ p̈(t+ α− β − γ) sin(α− γ) + ṗ(t+ α− β − γ) cos(α− γ))
]
=

= lim
α→(β+γ)+

[
− 1

cosα
R(t+ α− β − γ) sin(α− γ)

]
=

= − R(t) sinβ

cos(β + γ)
= 0,

because with our assumptions β + γ = 0 if and only if β = 0 and γ = 0. Then we
have sinβ = 0 and from de l’Hospital’s rule

lim
α→(β+γ)

µ(α, t) = 0.

�

Theorem 2.3. Let C be an oval with a support function p(t). Let

t 7→ zα,β,γ(t) = (p(t) + λ(α, t) sinβ + i(ṗ(t) + λ(α, t) cosβ))eit

be a secantoptic of an oval C. Then the function L(α, t) = λ(α, t)+R(t) sinβ satisfy
the following equation

(2.4)
∂L

∂α
− ∂L

∂t
+ L(α, t) cotα = R(t) cosβ − Ṙ(t) sinβ.

Proof. Let us notice, that
∂L

∂t
=

∂λ

∂t
+ Ṙ(t) sinβ,

∂L

∂α
=

∂λ

∂α
,

and
∂L

∂α
− ∂L

∂t
=

∂λ

∂α
− ∂λ

∂t
− Ṙ(t) sinβ = R(t)

sin(α− β)
sinα

− λ(α, t) cotα− Ṙ(t) sinβ.

Hence we have
∂L

∂α
− ∂L

∂t
+ L(α, t) cotα = R(t) cosβ − Ṙ(t) sinβ.

�
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Theorem 2.4. Let C be an oval with a support function p(t). Let

t 7→ zα,β,γ(t) = (p(t) + λ(α, t) sinβ + i(ṗ(t) + λ(α, t) cosβ))eit

be a secantoptic of an oval C. Then the function

M(α, t) = µ(α, t)−R(t+ α− β − γ) sin γ

satisfy the following equation

(2.5)
∂M

∂α
+M(α, t) cotα = −R(t+ α− β − γ) cos γ − Ṙ(t+ α− β − γ) sin γ.

Proof. Let us derivate the function M(α, t) with respect α
∂M

∂α
=

∂µ

∂α
− Ṙ(t+ α− β − γ) =

=
cosα

sinα
(−µ(α, t) +R(t+ α− β − γ) sin γ)−R(t+ α− β − γ) cos γ −

− Ṙ(t+ α− β − γ),

hence we have
∂M

∂α
+M(α, t) cotα = −R(t+ α− β − γ) cos γ − Ṙ(t+ α− β − γ) sin γ.

�

We are looking for the equation for the function v = |q| =
√
b2 +B2. Note that

for secantoptics are satisfied the following equalities
∂b

∂t
=

∂b

∂α
+B(t)−R(t),(2.6)

∂B

∂t
=

∂B

∂α
− b(t),(2.7)

which we can be differentiated with respect α

(2.8)

∂2b

∂t∂α
=
∂2b

∂α2
+
∂B

∂α
,

∂2B

∂t∂α
=
∂2B

∂α2
− ∂b

∂α
,

and written as
∂2b

∂t∂α
=

∂2b

∂α2
+R(t+ α− β − γ) sin(α− β − γ),

∂2B

∂t∂α
=

∂2B

∂α2
−R(t+ α− β − γ) cos(α− β − γ).

Since
∂2b

∂t∂α
=

∂2b

∂α∂t
= Ṙ(t+ α− β − γ) cos(α− β − γ),

∂2B

∂t∂α
=

∂2B

∂t∂α
= Ṙ(t+ α− β − γ) sin(α− β − γ),
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then we have

∂2b

∂α2
− ∂2b

∂α∂t
= −R(t+ α− β − γ) sin(α− β − γ),

∂2B

∂α2
− ∂2B

∂α∂t
= R(t+ α− β − γ) cos(α− β − γ).

Let us diferentiate the equation (2.7) with respect t to get

∂2B

∂t2
=

∂2B

∂α∂t
− ∂b

∂t
,

∂2B

∂t2
− ∂2B

∂α∂t
+B(t) = R(t)−R(t+ α− β − γ).

Theorem 2.5. The function u = 1
2 (b

2 +B2) satisfy the following equation

(2.9)
∂2u

∂α2
− ∂2u

∂α∂t
= R(t)R(t+ α− β − γ) cos(α− β − γ).

Proof. Let us differentiate the expression u = 1
2 (b

2 +B2)

∂u

∂α
= b(t)R(t+ α− β − γ) cos(α− β − γ) +

+ B(t)R(t+ α− β − γ) sin(α− β − γ),
∂2u

∂α2
= R2(t+ α− β − γ) + b(t)

(
∂2b

∂t∂α
−R(t+ α− β − γ) cos(α− β − γ)

)
+

+ B(t)

(
∂2B

∂t∂α
−R(t+ α− β − γ) sin(α− β − γ)

)
,

∂2u

∂α∂t
=

∂b

∂t

∂b

∂α
+ b(t)

∂2b

∂α∂t
+
∂B

∂t

∂B

∂α
+B(t)

∂2B

∂α∂t

and let us consider the difference

∂2u

∂α2
− ∂2u

∂α∂t
= R(t)R(t+ α− β − γ) cos(α− β − γ).

Hence we get (2.9). �

Theorem 2.6. The function v =
√
2u satisfy the folloving equation

(2.10) v
(
∂2v

∂α2
− ∂2v

∂α∂t

)
+

(
∂v

∂α

)2

− ∂v
∂t

∂v

∂α
= R(t)R(t+α−β−γ) cos(α−β−γ).
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Proof. Let us differentiate the function v =
√
2u

∂v

∂α
=

1

2
√
2u

2
∂u

∂α
=

1√
2u

∂u

∂α
=

1

v

(
b(t)

∂b

∂α
+B(t)

∂B

∂α

)
=

1

v

∂u

∂α
,

∂v

∂t
=

1√
2u

∂u

∂t
=

1

v

∂u

∂t
,

∂2v

∂α2
=

1

v2

(
v
∂2u

∂α2
− ∂v

∂α

∂u

∂α

)
=

1

v2

(
v
∂2u

∂α2
− 1

v

(
∂u

∂α

)2
)
,

∂2v

∂α∂t
=

1

v2

(
v
∂2u

∂α∂t
− ∂v

∂t

∂u

∂α

)
=

1

v2

(
v
∂2u

∂α∂t
− 1

v

∂u

∂t

∂u

∂α

)
and let us consider the expression

∂2v

∂α2
− ∂2v

∂α∂t
=

1

v

(
∂2u

∂α2
− ∂2u

∂α∂t
− 1

v2

(
∂u

∂α

)2

+
1

v2
∂u

∂t

∂u

∂α

)
.

Using (2.9) we have

v

(
∂2v

∂α2
− ∂2v

∂α∂t

)
= R(t)R(t+ α− β − γ) cos(α− β − γ)−

(
∂v

∂α

)2

+
∂v

∂t

∂v

∂α
,

and we have

v

(
∂2v

∂α2
− ∂2v

∂α∂t

)
+

(
∂v

∂α

)2

− ∂v

∂t

∂v

∂α
= R(t)R(t+ α− β − γ) cos(α− β − γ),

where v = |q(t)| =
√
b2(t) +B2(t). �

Let us define the function F (α) by the formula

(2.11) F (α) =

2π∫
0

R(t)p(t+ α− β − γ)dt.

Then

Ḟ (α) =

2π∫
0

R(t)ṗ(t+ α− β − γ)dt,(2.12)

F̈ (α) =

2π∫
0

R(t)p̈(t+ α− β − γ)dt.(2.13)

From the formula (2.9) we have

(F (α) + F̈ (α)) cos(α− β − γ) =
1

2

d2

dα2

2π∫
0

|q(α, t)|2dt.
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If we put

W (α) =
1

2

d2

dα2

2π∫
0

|q(α, t)|2dt,

then the function F (α) satisfy the equation

(2.14) (F (α) + F̈ (α)) cos(α− β − γ) = Ẅ (α).

If
α =

π

2
+ β + γ,

then cos(α− β − γ) = 0. Hence Ẅ (π2 + β + γ) = 0.

References

[1] K.Benko, W.Cieślak, S.Góźdź, and W.Mozgawa, On isoptic curves, An. Ştiinţ.
Univ. Al. I. Cuza Iaşi Secţ. I a Mat. 36, no. 1 (1990), 47–54.

[2] J. Berg, A.Yezzi, and A.Tannenbaum, Curve evolution models for real-time identi-
fication with application to plasma etching, IEEE Trans. Autom. Control 44, no. 1
(1999), 99–102.

[3] W.Cieślak, A.Miernowski, and W.Mozgawa, Isoptics of a closed strictly convex
curve, Global differential geometry and global analysis (Berlin 1990), 28–35, Lec-
ture Notes in Math. 1481, Springer, Berlin 1991.

[4] W.Cieślak, A.Miernowski, and W.Mozgawa, Isoptics of a closed strictly convex curve
II, Rend. Sem. Mat. Univ. Padova 96 (1996), 37–49.

[5] M.Gage, On an area-preserving evolution equation for plane curves, Contemp. Math.
51 (1986), 51–62.

[6] P. J.Giblin and B.B.Kimia, Local forms and transitions of the medial axis, Springer.
Computational Imaging and Vision 37 (2008), 37–68.

[7] B. B.Kimia, A.Tannenbaum, and S.W. Zucker, On the evolution of curves via a func-
tion of curvature. I: The classical case, J. Math. Anal. Appl. 163, no. 2, (1992),
438–458.

[8] F. F. Leymarie and B.B.Kimia, From the infinitely large to the infinitely small,
Springer. Computational Imaging and Vision 37 (2008), 327–351.

[9] W.Mozgawa and M. Skrzypiec, Crofton formulas and convexity condition for secan-
toptics, in print Bull. Belg. Math. Soc. – Simon Stevin.

[10] W.Mozgawa and M. Skrzypiec, Some properties of secantoptics of ovals, Beiträge
Algebra Geom. 53, no. 1 (2012), 261–272.

[11] W.Mozgawa and M. Skrzypiec, Integral formula for secantoptics and its application,
Ann. Mariae Curie-Skłodowska Univ., Sect. A 66, no. 1 (2012), 49–62.

[12] P. J.Olver, G. Sapiro, and A.Tannenbaum, Invariant geometric evolutions of sur-
faces and volumetric smoothing, SIAM J. Appl. Math. 57, no. 1, (1997), 176–194.

[13] L. Santalo, Integral geometry and geometric probability, Encyclopedia of Mathematics
and its Applications, Reading, Mass., 1976.

[14] M. Skrzypiec, A note on secantoptics, Beiträge Algebra Geom. 49, no. 1 (2008), 205–
215.



100 M. Skrzypiec

Institute of Mathematics
Maria Curie-Skłodowska University
pl. M. Curie-Skłodowskiej 1, PL-20-031 Lublin
Poland
e-mail: mskrzypiec@hektor.umcs.lublin.pl

Presented by Leon Mikołajczyk at the Session of the Mathematical-Physical Com-
mission of the Łódź Society of Sciences and Arts on May 28, 2015

RÓWNANIA RÓŻNICZKOWE DLA SEKANTOOPTYK

S t r e s z c z e n i e
Zbiór punktów przeciȩcia odpowiedniej pary siecznych danego owalu C, tworzy krzywa̧,

która̧ nazwaliśmy sekantooptyka̧ Cα,β,γ owalu C. W pracach [14], [9], [10] i [11] dowiedliśmy
wielu własności sekantooptyk i znaleźliśmy zależności pomiȩdzy pojȩciami sekantooptyk,
ewolutoid, jeży oraz izooptyk pary krzywych. W tej pracy prezentujemy pewne równania
różniczkowe zwia̧zane z sekantooptykami.

Słowa kluczowe: izooptyka, sekantooptyka, obwiednia
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VARIATIONAL ANALYSIS
OF A UNILATERAL CONTACT PROBLEM
WITH ADHESION AND SLIP-DEPENDENT FRICTION

Summary
The aim of this paper is to study a quasistatic contact between an elastic body and a

foundation. The constitutive law is nonlinear and the contact is modelled with unilaeral
constraint and normal compliance, associated with a slip-dependent version of Coulomb’s
law of dry friction. The adhesion between contact surfaces is taken into account and is
modelled with a surface variable, the bonding field, whose evolution is described by a
first-order differential equation. We establish a variational formulation of the mechanical
problem and prove an existence and uniqueness result. The technique of the proof is based
on arguments of time-dependent variational inequalities, differential equations and Banach
fixed-point theorem.

Keywords and phrases: elastic, normal compliance, adhesion, friction, unilateral constraint

1. Introduction

Contact problems involving deformable bodies are quite frequent in industry as well
as in daily life and play an important role in structural and mechanical systems.
Contact processes involve complicated surface phenomena, and are modelled with
highly nonlinear initial boundary value problems. Taking into account various con-
tact conditions associated with more and more complex behavior laws lead to the
introduction of new and non standard models, expressed by the aid of evolution vari-
ational inequalities. An early attempt to study contact problems within the frame-
work of variational inequalities was made in [11]. The mathematical, mechanical
and numerical state of the art can be found in [27] where we find detailed mathe-
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matical and numerical studies of the adhesive contact problems. Unilateral contact
problems involving Signorini’s condition with or without adhesion were studied by
several authors, see for instance the papers [1–3, 6–10, 12, 18, 19, 22, 23, 27, 31–34].

In this paper, we study a mathematical model which describes a frictional con-
tact problem with adhesion be.tween a nonlinear elastic body and a deformable
foundation. Following [18, 33] the contact is modelled with unilateral constraint and
normal compliance, associated to the Coulomb’s law where the coefficient of friction
depends on the slip displacement. This assumption is used by geological researchers
in the study of the motion of tectonic plates; see [17, 21, 25] and the references
therein. Moreover the adhesion between the contact surfaces is taken into account.
Recall that this model without adhesion was studied recently in [2] for elastic mate-
rials. However the models for dynamic or quasistatic processes of adhesive contact
between a deformable body and a foundation have been studied in [3–5, 7, 8, 13,
16, 19, 20, 22, 24, 26–33] and the references therein. Here as in [14, 15] we use the
bonding field as an additional state variable β, defined on the contact surface of the
boundary. The variable is restricted to values 0 ≤ β ≤ 1; when β = 0 all the bonds
are severed and there are no active bonds, when β = 1 all the bonds are active; when
0 < β < 1 it measures the fraction of active bonds and partial adhesion takes place.

In this work we extend the result established in [29] to the unilateral and ad-
hesive contact problem with a normal compliance condition, associated with a slip-
dependent version of Coulomb’s law of dry friction. We establish a variational for-
mulation of the mechanical problem for which we prove the existence of a unique
weak solution.

The paper is structured as follows. In section 2 we present some notations and
give the variational formulation. In section 3 we state and prove our main existence
and uniqueness result, Theorem 3.1.

2. Problem statement and variational formulation

In this section we describe the model of the process, list the assumptions on the
data and derive the variational formulation of the mechnical problem. The physical
setting is as follows. A nonlinear elastic body occupies a domain Ω ⊂ Rd (d = 2, 3)

with a Lipschiz boundary Γ that is divised into three measurable and disjoint parts
Γ1,Γ2,Γ3 such that meas (Γ1) > 0. The body is acted upon by a volume force of
density f1 on Ω and a surface traction of density f2 on Γ2. The body is in adhesive
contact with a fondation over Γ3 following a slip-dependent version of Coulomb’s
law of dry friction.

Thus, the classical formulation of the elastic contact problem with adhesion and
slip-dependent friction is the following.

Problem P1. Find a displacement u : Ω × [0, T ] → Rd and a bonding field
β : Γ3 × [0, T ]→ R such that
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(2.1) divσ (u) = −f1 in Ω× (0, T ) ,

(2.2) σ (u) = Fε (u) in Ω× (0, T ) ,

(2.3) u = 0 on Γ1 × (0, T ) ,

(2.4) σν = f2 on Γ2 × (0, T ) ,

(2.5)
uν ≤ g, σν + p (uν)− cνβ2Rν (uν) ≤ 0(
σν + p (uν)− cνβ2Rν (uν)

)
(uν − g) = 0

 on Γ3 × (0, T ) ,

(2.6)

∣∣στ + cτβ
2Rτ (uτ )

∣∣ ≤ µ (|uτ |) p (uν)∣∣στ + cτβ
2Rτ (uτ )

∣∣ < µ (|uτ |) p (uν)⇒ uτ = 0∣∣στ + cτβ
2Rτ (uτ )

∣∣ = µ (|uτ |) p (uν)⇒ ∃λ ≥ 0 such that
στ + cτβ

2Rτ (uτ ) = −λuτ

 on Γ3 × (0, T ) ,

(2.7) β̇ = −
[
β
(
cν(Rν (uν))2 + cτ |Rτ (uτ )|2

)
− εa

]
+

on Γ3 × (0, T ) ,

(2.8) β (0) = β0 on Γ3.

Equation (2.1) represents the equilibrium equation. Equation (2.2) represents
the elastic constitutive law of the material in which F is a given function and ε (u)

denotes the strain tensor; (2.3) and (2.4) are the displacement and traction boundary
conditions, respectively, in which ν denotes the unit outward normal vector on Γ and
σν represents the Cauchy stress vector. The condition (2.5) represents the unilateral
contact with adhesion in which p and−cνβ2Rν (uν) are the normal contact functions.
Here cν is a given adhesion coefficient and Rν is a truncation operator defined by

Rν (s) =


L if s < −L
−s if − L ≤ s ≤ 0

0 if s > 0

.

Here L > 0 is the characteristic length of the bond, beyond which the latter has no
additional traction (see [27]) and p is a normal compliance function which satisfies
the assumption beow (2.16). We denote by the positive constant g the maximum
value of the penetration. When uν < 0 i.e. when there is separation between the
body and the foundation then the condition (2.5) combined with hypotheses (2.16)
on the function p shows that σν = cνβ

2Rν (uν) and by assumption (2.17) below,
it does not exeed the value L (1 + g). When g > 0, the body may interpenetrate
into the foundation, but the penetration is limited that is uν ≤ g. In this case of
penetration (i.e. uν ≥ 0), when 0 ≤ uν < g then −σν = p (uν) which means that
the reaction of the foundation is uniquely determined by the normal displacement
and σν ≤ 0. Since p is an increasing function then the reaction of the foundation is
increasing with the penetration and when uν = g, then −σν ≥ p (g) and σν is not
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uniquely determined. When g > 0 and p = 0, condition (2.5) becomes the Signorini
contact condition with adhesion with a gap function,

uν ≤ g, σν − cνβ2Rν (uν) ≤ 0, (σν − cνβ2Rν (uν))(uν − g) = 0.

When g = 0, the condition (2.5) combined with assumption (2.16) becomes the
Signorini contact condition with adhesion with a zero gap function, given by

uν ≤ 0, σν − cνβ2Rν (uν) ≤ 0, (σν − cνβ2Rν (uν))uν = 0.

This contact condition was used in [7, 25, 26, 29, 30]. The condition (2.6) repre-
sents the slip-dependent version of Coulomb’s friction law with adhesion in which
cτβ

2Rτ (uτ ) is an adhesive where cτ is a coefficient of adhesion and Rτ is a truncation
operator defined by

Rτ (v) =

 v if |v| ≤ L
L
v

|v|
if |v| > L ,

where L > 0 is the characteristic length of the bonds. Equation (2.7) represents
the ordinary differential equation which describes the evolution of the bonding field,
where εa is an adhesion coefficient and β+ = max (0, β). Since β̇ ≤ 0 on Γ3 × (0, T ),
once debonding occurs bonding cannot be reestablished and, indeed, the adhesive
process is irreversible. Also from [20] it must be pointed out clearly that condition
(2.7) does not allow for complete debonding in finite time. Finally, (2.8) is the initial
condition, in which β0 denotes the initial bonding field. In (2.7) a dot above a variable
represents its derivative with respect to time. We denote by Sd the space of second
order symmetric tensors on Rd (d = 2, 3) and |.| represents the Euclidean norm on Rd

and Sd. Thus, for every u, v ∈ Rd, u.v = uivi, |v| = (v.v)
1
2 , and for every σ, τ ∈ Sd,

σ.τ = σijτij , |τ | = (τ.τ)
1
2 . Here and below, the indices i and j run between 1 and

d and the summation convention over repeated indices is adopted. Now, to proceed
with the variational formulation, we need the following function spaces:

H =
(
L2 (Ω)

)d , H1 =
(
H1 (Ω)

)d , Q =
{
τ = (τij) ; τij = τji ∈ L2 (Ω)

}
,

Q1 = {τ ∈ Q; divτ ∈ H} .
Note that H and Q are real Hilbert spaces endowed with the respective canonical
inner products

(u, v)H =

∫
Ω

uividx, (σ, τ)Q =

∫
Ω

σijτijdx.

The strain tensor is
ε (u) = (εij (u)) =

1

2
(ui,j + uj,i)

and divσ = (σij,j) is the divergence of σ . For every v ∈ H1 we denote by vν and vτ
the normal and tangential components of v on the boundary Γ given by

vν = v.ν, vτ = v − vνν.

We also denote by σν and στ the normal and the tangential traces of a function
σ ∈ Q1, and when σ is a regular function then
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σν = (σν) .ν, στ = σν − σνν,

and the following Green’s formula holds:

(σ, ε (v))Q + (divσ, v)H =

∫
Γ

σν.vda ∀v ∈ H1,

where da is the surface measure element. Now, let V be the closed subspace of H1

defined by
V = {v ∈ H1 : v = 0 on Γ1} ,

and let the convex subset of admissible displacements given by

K = {v ∈ V : vν ≤ g a.e on Γ3} .

Since meas(Γ1) > 0, the following Korn’s inequality holds [11],

(2.9) ‖ε (v)‖Q ≥ cΩ ‖v‖H1
∀v ∈ V,

where cΩ > 0 is a constant which depends only on Ω and Γ1. We equip V with the
inner product

(u, v)V = (ε (u) , ε (v))Q

and ‖.‖V is the associated norm. It follows from Korn’s inequality (2.9) that the
norms ‖.‖H1

and ‖.‖V are equivalent on V. Then (V, ‖.‖V ) is a real Hilbert space.
Moreover by Sobolev’s trace theorem, there exists dΩ > 0 which only depends on
the domain Ω, Γ1 and Γ3 such that

(2.10) ‖v‖(L2(Γ3))d ≤ dΩ ‖v‖V ∀v ∈ V.

For p ∈ [1,∞] , we use the standard norm of Lp (0, T ;V ). We also use the Sobolev
space W 1,∞ (0, T ;V ) equipped with the norm

‖v‖W 1,∞(0,T ;V ) = ‖v‖L∞(0,T ;V ) + ‖v̇‖L∞(0,T ;V ) .

For every real Banach space (X, ‖.‖X) and T > 0 we use the notation C ([0, T ] ;X)

for the space of continuous functions from [0, T ] to X; recall that C ([0, T ] ;X) is a
real Banach space with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x (t)‖X .

We assume that the body forces and surface tractions have the regularity

(2.11) f1 ∈W 1,∞ (0, T ;H) , f2 ∈W 1,∞ (0, T ; (L2 (Γ2))d
)
.

It follows from (2.11) and Riesz’s representation theorem that there exists a function
f : [0, T ]→ V such that

(2.12) (f (t) , v)V =

∫
Ω

f1 (t) .vdx+

∫
Γ2

f2 (t) .vda ∀v ∈ V , t ∈ [0, T ] ,

and note that (2.11) and (2.12) imply that

f ∈W 1,∞ (0, T ;V ) .
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In the study of the mechanical problem P1 we suppose that the nonlinear elasticity
operator F : Ω× Sd → Sd satisfies

(2.13)

(a) there exists M > 0 such that
|F (x, ε1)− F (x, ε2)| ≤M |ε1 − ε2| ∀ ε1, ε2 ∈ Sd,
a.e. x ∈ Ω;

(b) there exists m > 0 such that
(F (x, ε1)− F (x, ε2)) . (ε1 − ε2) ≥ m |ε1 − ε2|2 ,
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω;

(c) the mapping x→ F (x, ε) is Lebesgue measurable on Ω,

for any ε ∈ Sd;

(d) F (x, 0) = 0 for a.e. x ∈ Ω.


The adhesion coefficients satisfy

(2.14) cν , cτ ∈ L∞ (Γ3) , εa ∈ L2 (Γ3) and cν , cτ , εa ≥ 0 a.e. on Γ3,

and the coefficient of friction µ is assumed to satisfy

(2.15)

(a) µ : Γ3 × R+ → R+;

(b) there exists Lµ > 0 such that
|µ (x, r1)− µ (x, r2)| ≤ Lµ |r1 − r2| ∀r1, r2 ∈ R+, a.e. x ∈ Γ3;

(c) there exists µ0 > 0 such that
µ(x, r) ≤ µ0 ∀r ∈ R+, a.e. x ∈ Γ3;

(d) the function x→ µ(x, r) is Lebesgue
measurable on Γ3, ∀r ∈ R+.


Also we define respectively the functionals

jad : L2 (Γ3)× V × V → R and jfr : V × V → R+

by

jad (β, u, v) =
∫

Γ3

[
(p(uν)− cνβ2Rν (uν))vν + cτβ

2Rτ (uτ ) .vτ
]
da,

∀ (β, u, v) ∈ L2 (Γ3)× V × V,

jfr (u, v) =

∫
Γ3

µ (|uτ |) p (uν) |vτ | da ∀ (u, v) ∈ V × V,
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where the normal compliance function p : Γ3 × R→ R+ satisfies

(2.16)



(a) There exists L1 > 0 such that
|p (x, r1)− p (x, r2)| ≤ L1 |r1 − r2|
∀r1, r2 ∈ R, a.e. x ∈ Γ3;

(b) (p (x, r1)− p (x, r2)) (r1 − r2) ≥ 0

∀r1, r2 ∈ R, a.e. x ∈ Γ3;

(c) there exists L2 > 0 such that
p (x, r) ≤ L2 ∀r ∈ R, a.e. x ∈ Γ3;

(d) the mapping x→ pν (x, r) is measurable on Γ3, for any r ∈ R;

(e) p (x, r) = 0 ∀r ≤ 0, a.e. x ∈ Γ3.

Finally, we assume that the initial data satisfies

(2.17) β0 ∈ L2 (Γ3) ; 0 ≤ β0 ≤ 1 a.e. on Γ3

and next, we need to introduce the following set for the bonding field,

B =
{
θ : [0, T ]→ L2 (Γ3) ; 0 ≤ θ (t) ≤ 1, ∀t ∈ [0, T ] , a.e. on Γ3

}
.

Now, by a standard procedure based on the Green formula, we obtain the following
variational formulation of the mechanical problem P1.

Problem P2. Find a displacement field u : [0, T ] → V and a bonding field
β : [0, T ]→ L2 (Γ3) such that
(2.18)

u (t) ∈ K, (Fε (u (t)) , ε (v)− ε (u (t)))Q + jad (β (t) , u (t) , v − u (t))

+jfr (u (t) , v)− jfr (u (t) , u (t)) ≥ (f (t) , v − u (t))V ∀ v ∈ K, t ∈ [0, T ] ,

(2.19) β̇ (t) = −
[
β (t)

(
cν(Rν (uν (t)))2 + cτ |Rτ (uτ (t))|2

)
− εa

]
+
a.e. t ∈ (0, T ) ,

(2.20) β (0) = β0.

3. Existence of solution for Problem P2

Our main existence and uniqueness result concerning Problem P2 which we establish
in this section, is the following.

Theorem 3.1. Let (2.11) , (2.13), (2.14), (2.15), (2.16) and (2.17) hold. Then Prob-
lem P2 has a unique solution, which satisfies

(3.1) u ∈W 1,∞ (0, T ;V ) ∩ C ([0, T ] ;K) and
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(3.2) β ∈W 1,∞ (0, T ;L2 (Γ3)
)
∩ B,

if
(L2Lµ + µ0L1) < m/d2

Ω.

We assume in the following that conditions of Theorem 3.1 hold; below, c denotes
a generic positive constant which does not depend on t nor on the rest of the input
data, and whose value may change from place to place. The proof of the theorem is
carried out in several steps. In the first step, let k > 0 and consider the closed subset
X of C

(
[0, T ] ;L2 (Γ3)

)
defined as

X =
{
θ ∈ C

(
[0, T ] ;L2 (Γ3)

)
∩B, θ (0) = β0

}
,

where the Banach space C
(
[0, T ] ;L2 (Γ3)

)
is endowed with the norm

‖θ‖k = max
t∈[0,T ]

[
exp (−kt) ‖θ (t)‖L2(Γ3)

]
for all θ ∈ C

(
[0, T ] ;L2 (Γ3)

)
.

Next for a given β ∈ X, we consider the following variational problem.

Problem P1β . Find uβ : [0, T ]→ V such that
(3.3)
uβ (t) ∈ K, (Fε (uβ (t)) , ε (v − uβ (t)))Q + jad (β (t) , uβ (t) , v − uβ (t))

+jfr (uβ (t) , v)− jfr (uβ (t) , uβ (t)) ≥ (f (t) , v − uβ (t))V ∀v ∈ K, t ∈ [0, T ] .

We have the following result.

Proposition 3.2. Problem P1β has a unique solution

(3.4) uβ ∈ C ([0, T ] ;K) ,

if
(L2Lµ + µ0L1) < m/d2

Ω.

We shall establish the proof of Proposition 3.2 in several steps. Indeed, at first for
each t ∈ [0, T ] and a given η ∈ K, we consider the following auxiliary problem.

Problem Pβη. Find uβη (t) ∈ K such that

(3.5)
(Fε (uβη (t)) , ε (v − uβη (t)))Q + jad (β (t) , uβη (t) , v − uβη (t)) + j (η, v)

−jfr (η, uβη (t)) ≥ (f (t) , v − uβη (t))V ∀v ∈ K.

We have the lemma below.

Lemma 3.3. Problem Pβη has a unique solution.

Proof. Let the operator At : V → V defined by

(Atu, v)V = (Fε (u) , ε (v))Q + jad (β (t) , u, v) , ∀u, v ∈ V.
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We use (2.10), (2.13a), (2.13b), (2.16b) and (2.16c) to show that the operator At is
strongly monotone and Lipschitz continuous; the functional j (η, .) : K → R+ is a
continuous seminorm; then by a standard existence and uniqueness result for elliptic
quasivariational inequalities (see [29]), it follows that there exists a unique element
uβη (t) ∈ K which satisfies the inequality (3.5) since K is a non-empty, closed convex
subset of V . �

Now, in the second step, for a fixed t ∈ [0, T ] we use Lemma 3.3 to consider the
map Tt : K → K defined as

Tt (η) = uβη (t) .

We have the following lemma.

Lemma 3.4. The map Tt has a unique fixed point η∗ and uβη∗ (t) is a unique
solution of the inequality (3.3).

Proof. Let η1, η2 ∈ K. In inequality (3.5) satisfied by uη1 (t) take v = uη2 (t) and also
in the same inequality satisfied by uη2 (t) take v = uη1 (t). Using (2.10), (2.13) (c)

and (2.16) , it follows after adding the resulting inequalities that

‖Tt (η1)− Tt (η2)‖V ≤
(L2Lµ + µ0L1) d2

Ω

m
‖η1 − η2‖V .

Then for (L2Lµ + µ0L1) < m/d2
Ω, the map Tt is a contraction; so it has a unique

fixed point η∗ and uβη∗ (t) is a unique solution of the inequality (3.3) . Next, denote
uβη∗ (t) = uβ (t) for each t ∈ [0, T ]. As in [28], to show that uβ ∈ C ([0, T ] ;K), it
suffices to see from (3.3) that under the condition (L2Lµ + µ0L1) < m/d2

Ω, we have

(3.6)
‖uβ (t1)− uβ (t2)‖V ≤
c
(
‖f (t1)− f (t2)‖V + ‖β (t1)− β (t2)‖L2(Γ3)

)
∀t1, t2 ∈ [0, T ] .

Therefore, using the regularity

f ∈ C ([0, T ] ;V ) and β ∈ C
(
[0, T ] ; L2 (Γ3)

)
,

we immediately obtain (3.4). �

In the second step, we use Lemma 3.4 to consider the following initial value
problem.

Problem P2β . Find χβ : [0, T ]→ L2 (Γ3) such that
(3.7)
χ̇β (t) = −

[
χβ (t)

(
cν(Rν (uβν (t)))2 + cτ |Rτ (uβτ (t))|2

)
− εa

]
+
a.e. t ∈ (0, T ) ,

(3.8) χβ (0) = β0.

We obtain the following result.

Lemma 3.5. Problem P2β has a unique solution χβ which satisfies

χβ ∈W 1,∞ (0, T ;L2 (Γ3)
)
∩ B.
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Proof. Consider the mapping

Fβ (t, θ) : [0, T ]× L2 (Γ3)→ L2 (Γ3)

defined by

Fβ (t, θ) = −
[
θ
(
cν(Rν (uβν (t)))2 + cτ |Rτ (uβτ (t))|2

)
− εa

]
+
.

It follows from the properties of the truncation operators Rν and Rτ , that Fβ is
Lipschitz continuous with respect to the second argument, uniformly in time. More-
over, for any θ ∈ L2 (Γ3), the mapping t → Fβ (t, θ) belongs to L∞

(
0, T ;L2 (Γ3)

)
.

Then, from a version of Cauchy-Lipschitz theorem, we deduce the existence of a
unique fonction χβ ∈ W 1,∞ (0, T ;L2 (Γ3)

)
, which satisfies (3.7), (3.8). The regular-

ity χβ ∈ B, follows from (3.7), (3.8) and (2.20), (see [27]). Therefore, from Lemma
3.5, we deduce that for all β ∈ X, the solution χβ of Problem P2β belongs to X. In
the third step we use this lemma to define the map Λ : X → X by

Λβ = χβ .

We have the following lemma.

Lemma 3.6. The map Λ has a unique fixed point β∗.

Proof. Let uβ the solution of Problem P1β . We have

Λβ (t) = β0 −
∫ t

0

[
χβ (s)

(
cν(Rν (uβν (s)))2 + cτ |Rτ (uβτ (s))|2

)
− εa

]
+
ds.

Then for β1, β2 ∈ X, by (2.19) (a) and the properties of Rν and Rτ (see [27]), we
get

|χβ1 (t)− χβ2 (t)| ≤

c
∫ t

0
(|χβ1 (s)− χβ2 (s)|+ |uβ1τ (s)− uβ2τ (s)|)ds.

Applying Gronwall’s inequality and using (2.10) yields

‖χβ1 (t)− χβ2 (t)‖L2(Γ3) ≤ c
∫ t

0

‖uβ1 (s)− uβ2 (s)‖V ds.

Now let t ∈ [0, T ]. Then, using (3.3), (2.13), (2.16) and

(L2Lµ + µ0L1) < m/d2
Ω,

as in [31], it follows that

‖uβ1 (t)− uβ2 (t)‖V ≤ c ‖β1 (t)− β2 (t)‖L2(Γ3)

from which we deduce the inequality

‖Λβ1 (t)− Λβ2 (t)‖L2(Γ3) ≤ c
∫ t

0
‖β1 (s)− β2 (s)‖L2(Γ3) ds ∀t ∈ [0, T ]

and therefore, we obtain

‖Λβ1 − Λβ2‖k ≤
c

k
‖β1 − β2‖k , ∀β1, β2 ∈ X.



Variational analysis of a unilateral contact problem with adhesion 111

Thus, this inequality implies that for k sufficiently large, Λ is a contraction. Then,
it has a unique fixed point β∗ which satisfies (3.7) and (3.8). On the other hand from
(3.6) and (2.11) we deduce that uβ∗ ∈W 1,∞ (0, T ;V ). �

Proof of Theorem 3.1. Let β = β∗ and uβ∗ the solution to Problem P1β . From (3.3),
(3.7) and (3.8) we conclude that (uβ∗ , β

∗) is a solution of Problem P2. To prove the
uniqueness of solution, assume that (u, β) is a solution of Problem P2 which satisfies
(2.18), (2.19) and (2.20). It follows from (2.18) that u is a solution of Problem P1β

and by Proposition 3.2 we obtain u = uβ . Then, we take u = uβ in (2.18) and we use
the initial condition (2.20) to deduce that β is a solution of Problem P2β . Finally,
using Lemma 3.5, we get β = β∗ and therefore (uβ∗ , β

∗) is a unique solution of
Problem P2 which satisfies (3.1), (3.2).
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ANALIZA WARIACYJNA ZAGADNIENIA KONTAKTU
POWIERZCHNI Z PRZYLEGANIEM I TARCIEM ZALEŻNYM
OD PRZEMIESZCZENIA POŚLIZGOWEGO

S t r e s z c z e n i e
Celem pracy jest zbadanie statycznego kontaktu między elastycznym ciałem a pod-

łożem. Zależności opisujące kontakt są nieliniowe, a sam kontakt modelowany jest za po-
mocą jednostronnych więzów i odkształcenia normalnego związanych z prawem suchego
tarcia Coulomba w wersji z poślizgiem. Przyleganie pomiędzy stykającymi się powierzch-
niami zostało uwzględnione i wymodelowane za pomocą pola wiążącego, którego zmien-
ność opisana została równaniami różniczkowymi 1. rzędu. Zaproponowano wariacyjne sfor-
mułowanie mechanicznego zagadnienia i wykazano istnienie oraz jednoznaczność rozwiąza-
nia. Technika dowodzenia oparta została na zależnych od czasu nierównościach waria-
cyjnych, równaniach różniczkowuch i twierdzeniu Banacha o punkcie stałym.

Słowa kluczowe: elastyczność, odkształcenie normalne, adhezja, tarcie, więzy jednostronne
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A FRICTIONAL CONTACT PROBLEM WITH UNILATERAL CON-
STRAINT AND NORMAL COMPLIANCE

Summary
We consider a mathematical model which describes the equilibrium of a nonlinear

elastic body in frictional contact with a foundation. The contact is modelled with normal
compliance and unilateral constraints, associated with Coulomb’s law of dry friction. We
establish a variational formulation of the mechanical problem and prove an existence and
uniqueness result if the coefficient of friction is small enough. The technique of the proof is
based on arguments of elliptic quasivariational inequalities and Banach fixed-point theorem.
We also study a penalized and regularized problem which admits at least one solution and
prove its convergence to the solution of the model when the penalization and regularization
parameter tends to zero.

Keywords and phrases: elastic, normal compliance, friction, unilateral constraint

1. Introduction

Contact problems involving deformable bodies are quite frequent in industry as
well as in daily life and play an important role in structural and mechanical sys-
tems. Contact processes involve complicated surface phenomena, and are modelled
with highly nonlinear initial boundary value problems. Taking into account various
contact conditions associated with more and more complex behavior laws leads to
the introduction of new and non standard models, expressed by the aid of evolu-
tion variational inequalities. An early attempt to study contact problems within the
framework of variational inequalities was made in [7]. The mathematical, mechanical
and numerical state of the art can be found in [10] where we find detailed mathemat-
ical and numerical studies of the contact problems. We recall that unilateral contact
problems involving Signorini’s condition have been studied by several authors, see
for instance the papers [1, 3–6, 8–11, 13, 14] and the references therein.
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In this paper, we study a mathematical model which describes a static contact
with normal compliance, unilateral constraint and slip-dependent friction law for
elastic materials. We present a weak formulation of the problem, then we state and
prove an existence and uniqueness of the solution if the coefficient of friction is small
enough. We also consider a penalized and regularized problem which has at least one
solution and prove its convergence to the solution of the model when the parameter
of penalization and regularization tends to zero.

The paper is structured as follows. In Section 2 we present some notations and
give the variational formulation. In Section 3 we state and prove our main existence
and uniqueness result, Theorem 3.1. In section 4 we establish a convergence result,
Theorem4.2. Also, we study the mechanical interpretation on the contact surface,
Theorem4.6.

2. Problem statement and variational formulation

We consider a nonlinear elastic body which occupies a domain Ω ⊂ Rd (d = 2, 3)

and assume that its boundary Γ is regular and partitioned into three measurable
and disjoint parts Γ1,Γ2,Γ3 such that meas (Γ1) > 0. The body is acted upon by a
volume force of density f1 in Ω and a surface traction of density f2 on Γ2. On Γ3 the
body is in unilateral contact following the Coulomb’s friction law with a foundation.

Then, the classical formulation of the mechanical problem in terms of displace-
ment field is written as follows.

Problem P1. Find a displacement field u : Ω→ Rd such that

(2.1) divσ (u) = −f1 in Ω,

(2.2) σ (u) = Fε (u) in Ω,

(2.3) u = 0 on Γ1,

(2.4) σν = f2 on Γ2,

(2.5)
uν ≤ g, σν + p (uν) ≤ 0

(σν + p (uν)) (uν − g) = 0

 on Γ3,

(2.6)

|στ | ≤ µp (uν)

|στ | < µp (uν) =⇒ uτ = 0

|στ | = µp (uν) =⇒

∃λ ≥ 0; στ = −λuτ


on Γ3.
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Equation (2.1) represents the equilibrium equation. Equation (2.2) is the elastic
constitutive law of the material in which σ = σ (u) denotes the stress field, F is a
given function and ε (u) denotes the strain tensor. Relations (2.3) and (2.4) are the
displacement and traction boundary conditions, respectively, in which ν denotes the
unit outward normal vector on Γ and σν represents the Cauchy stress vector. The
condition (2.5) represents the unilateral contact with normal compliance p which
satisfies the assumption below (2.14). We denote by the positive constant g the
maximum value of the penetration. When uν < 0, there is separation between the
body and the foundation, then the condition (2.5) combined with (2.14) shows that
σν = −pν (uν) and it does not exeed the value Lpg. When g > 0, the body may
interpenetrate into the foundation, but the penetration is limited that is uν ≤ g. In
this case of penetration (i.e. uν ≥ 0), when 0 ≤ uν < g then −σν = p (uν) which
means that the reaction of the foundation is uniquely determined by the normal
displacement and σν ≤ 0. Since p is an increasing function then the reaction of the
foundation is increasing with the penetration and when uν = g, then −σν ≥ p (g)

and σν is not uniquely determined. When g > 0 and p = 0, the condition (2.5)
becomes the Signorini contact condition with a gap,

uν ≤ g, σν ≤ 0, σν(uν − g) = 0.

When g = 0, the condition (2.5) combined with assumption (2.14) becomes the
Signorini contact condition with a zero gap, given by

uν ≤ 0, σν ≤ 0, σνuν = 0.

We denote by Sd the space of second order symmetric tensors on Rd (d = 2, 3) and
|.| represents the Euclidean norm on Rd and Sd. Thus, for every u, v ∈ Rd,

u.v = uivi, |v| = (v.v)
1
2 ,

and for every σ, τ ∈ Sd,

σ.τ = σijτij , |τ | = (τ.τ)
1
2 .

Here and below, the indices i and j run between 1 and d and the summation con-
vention over repeated indices is adopted. Now, to proceed with the variational for-
mulation, we need the following function spaces:

H =
(
L2 (Ω)

)d , H1 =
(
H1 (Ω)

)d , Q =
{
τ = (τij) ; τij = τji ∈ L2 (Ω)

}
,

Q1 = {τ ∈ Q; divτ ∈ H} .

Note that H and Q are real Hilbert spaces endowed with the respective canonical
inner products

(u, v)H =

∫
Ω

uividx, (σ, τ)Q =

∫
Ω

σijτijdx.

The strain tensor is

ε (u) = (εij (u)) , where εij (u) =
1

2
(ui,j + uj,i) ;
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divσ = (σij,j) is the divergence of σ. For every v ∈ H1 we denote by vν and vτ the
normal and tangential components of v on the boundary Γ given by

vν = v.ν, vτ = v − vνν.

We also denote by σν and στ the normal and the tangential traces of a function
σ ∈ Q1, and when σ is a regular function then

σν = (σν) .ν, στ = σν − σνν,

and the following Green’s formula holds:

(σ, ε (v))Q + (divσ, v)H =

∫
Γ

σν.vda ∀v ∈ H1,

where da is the surface measure element. Now, let V be the closed subspace of H1

defined by

V = {v ∈ H1 : v = 0 on Γ1} ,

and let the convex subset of admissible displacements given by

K = {v ∈ V : vν ≤ g a.e. on Γ3} .

Since meas(Γ1) > 0, the following Korn’s inequality holds [7],

(2.9) ‖ε (v)‖Q ≥ cΩ ‖v‖H1
∀v ∈ V,

where cΩ > 0 is a constant which depends only on Ω and Γ1. We equip V with the
inner product

(u, v)V = (ε (u) , ε (v))Q

and ‖.‖V is the associated norm. It follows from Korn’s inequality (2.9) that the
norms ‖.‖H1

and ‖.‖V are equivalent on V. Then (V, ‖.‖V ) is a real Hilbert space.
Moreover by Sobolev’s trace theorem, there exists dΩ > 0 which only depends on
the domain Ω, Γ1 and Γ3 such that

(2.10) ‖v‖(L2(Γ3))d ≤ dΩ ‖v‖V ∀v ∈ V.

We suppose that the body forces and surface tractions have the regularity

(2.11) f1 ∈ H, f2 ∈ (L2 (Γ2))d

and let f the element of V defined by

(f, v)V =

∫
Ω

f1.vdx+

∫
Γ2

f2.vda ∀v ∈ V.

In the study of the mechanical problem P1 we assume that the nonlinear elasticity
operator F : Ω× Sd → Sd satisfies:
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(2.12)

(a) There exists M > 0 such that
|F (x, ε1)− F (x, ε2)| ≤M |ε1 − ε2| ∀ ε1, ε2 ∈ Sd,
a.e. x ∈ Ω;

(b) there exists m > 0 such that
(F (x, ε1)− F (x, ε2)) . (ε1 − ε2) ≥ m |ε1 − ε2|2 ,
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω;

(c) the mapping x→ F (x, ε) is Lebesgue measurable on Ω,

for any ε ∈ Sd;

(d) F (x, 0) = 0 for a.e. x ∈ Ω.


Next we define the functional jc : V × V → R by

jc (u, v) =
∫

Γ3
p(uν)vνda, ∀ (u, v) ∈ V × V

and the functional jf : V × V → R+ by

jf (u, v) =

∫
Γ3

µp (uν) |vτ | da ∀ (u, v) ∈ V × V,

where the coefficient of friction µ satisfies

(2.13) µ ∈ L∞ (Γ3) and µ ≥ 0 a.e. on Γ3.

We assume that the normal compliance function p : Γ3 × R→ R+ satisfies:

(2.14)



(a) There exists Lp > 0 such that
|p (x, r1)− p (x, r2)| ≤ Lp |r1 − r2|
∀r1, r2 ∈ R, a.e. x ∈ Γ3;

(b) (p (x, r1)− p (x, r2)) (r1 − r2) ≥ 0

∀r1, r2 ∈ R, a.e. x ∈ Γ3;

(c) the mapping x→ p (x, r) is measurable on Γ3, for any r ∈ R;

(d) p (x, r) = 0 ∀r ≤ 0, a.e. x ∈ Γ3.

Now let us define

H
1
2 (Γ3) =

{
µ |Γ3

: µ ∈ H 1
2 (Γ) , µ = 0 on Γ1

}
equipped with the norm of H

1
2 (Γ) . 〈., .〉 shall denote the duality pairing on H

1
2 (Γ3),

H−
1
2 (Γ3) and [., .] shall denote the duality pairing on (H

1
2 (Γ3))d, (H−

1
2 (Γ3))d.

Finally, by a standard procedure based on the Green formula, we obtain the
following variational formulation of Problem P1.
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Problem P2. Find a displacement field u ∈ K such that

(2.15)
(Fε (u) , ε (v − u))Q + jc (u, v − u)

+jf (u, v)− jf (u, u) ≥ (f, v − u)V ∀ v ∈ K.

3. Existence of solution for problem P2

In the study of the problem P2 we have the following existence and uniqueness result.

Theorem 3.1. Let (2.11), (2.12), (2.13) and (2.14) hold. Then Problem P2 has a
unique solution if

‖µ‖L∞(Γ3) < m/Lpd
2
Ω.

The proof of Theorem3.1 will be established in several steps. Indeed, in the first
step for a given η ∈ K, we consider the following intermediate problem.

Problem Pη. Find uη ∈ K such that

(3.1)
(Fε (uη) , ε (v − uη))Q + jc (uη, v − uη) + jf (η, v)

−jf (η, uη) ≥ (f, v − uη)V ∀v ∈ K.

Lemma 3.3. Problem Pη has a unique solution.

Proof. Let the operator A : V → V defined by

(Au, v)V = (Fε (u) , ε (v))Q + jc (u, v) , ∀u, v ∈ V.

We use (2.10), (2.12a), (2.12b), (2.14a) and (2.14b) to show that the operator A is
strongly monotone and Lipschitz continuous; the functional j (η, .) : K → R+ is a
continuous seminorm; then by a standard existence and uniqueness result for elliptic
variational inequalities (see [2]), it follows that there exists a unique element uη ∈ K
which satisfies the inequality (3.1) since K is a non-empty, closed convex subset of
V. �

Now, in the second step, we consider the map T : K → K defined as

T (η) = uη.

We have the following lemma.

Lemma 3.4. The map T has a unique fixed point η∗ and uη∗ is a unique solution
of Problem P2.

Proof. Let η1, η2 ∈ K. In inequality (3.1) satisfied by uη1
take v = uη2

and also in
the same inequality satisfied by uη2

take v = uη1
. Then, using (2.10), (2.12b) and

(2.14b), it follows after adding the resulting inequalities that
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‖T (η1)− T (η2)‖V ≤
‖µ‖L∞(Γ3) Lpd

2
Ω

m
‖η1 − η2‖V , ∀η1, η2 ∈ K.

Then, for
‖µ‖L∞(Γ3) Lpd

2
Ω)/m < 1,

the map T is a contraction; so it has a unique fixed point η∗ and uη∗ is a unique
solution of Problem P2. Next, denote uη∗ = u. �

4. A convergence result

In this section we consider a frictional contact problem with normal compliance
where the penetration is unlimited. The contact conditions (2.5) and (2.6) are re-
placed respectively on Γ3 by

−σδν =
1

δ
(uδν − g)+ + p (uδν)

and
σδτ = −µp (uδν)

uδτ√
|uδτ |2 + δ2

,

where δ > 0 is a penalization and regularization parameter. Then we define the
penalized and regularized problem as follows.

Problem Pδ. Find a displacement field uδ : Ω→ Rd such that

divσ (uδ) = −f1 in Ω,

σ (uδ) = Fε (uδ) in Ω,

uδ = 0 on Γ1,

σδν = f2 on Γ2,

−σδν =
1

δ
(uδν − g)+ + p (uδν) on Γ3,

σδτ = −µp (uδν)
uδτ√

|uδτ |2 + δ2

on Γ3.

We denote σδ = σ (uδ) and we recall that 1/δ is interpreted as the stiffness
coefficient of the foundation. We understand that when δ is small, the reaction of the
foundation to the penetration is important; also when δ is large then the reaction of
the foundation to the penetration is weaker. We study the behavior of the solution
as δ → 0 and prove that in the limit we obtain the solution of frictional contact
problem with normal compliance and finite penetration. In the next we define the
functionals jcδ : V × V → R and jfδ : V × V → R
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by

jcδ (u, v) =
∫

Γ3

(
1

δ
(uν − g)+ + p (uν)

)
vνda, ∀ (u, v) ∈ V × V,

jfδ (u, v) =
∫

Γ3
µp (uν)

uτ√
|uτ |2 + δ2

vτda, ∀ (u, v) ∈ V × V.

With these notations, the variational formulation of the penalized and regularized
problem with frictional contact is the following.

Problem Pδ. Find a displacement field uδ ∈ V such that

(4.1) (Fε (uδ) , ε (v))Q + jcδ (uδ, v) + jfδ (uδ, v) = (f, v)V , ∀v ∈ V .

We have the following result.

Theorem 4.1. Problem Pδ has at least one solution.

Proof. As in [8], to prove Theorem4.1 we use the arguments of pseudomonotone
operators. In fact, we define the operators B, C, D : V → V

′
by

〈Bu, v〉V ′×V = (Fε (u) , ε (v))Q, ∀u, v ∈ V,
〈Cu, v〉V ′×V = jcδ (u, v) , ∀u, v ∈ V,
〈Du, v〉V ′×V = jfδ (u, v) , ∀u, v ∈ V.

We use the assumption (2.12) to see that the operator B is bounded and elleptic.
Indeed, for all u, v ∈ V , the following holds:

〈Bu, v〉V ′×V ≤M ‖u‖V ‖v‖V and 〈Bv, v〉V ′×V ≥ m ‖v‖
2
V .

We also use (2.13), the compact embedding H
1
2 (Γ3) ↪→ L2 (Γ3) and the Lebesgue

dominated convergence, to show that the operators C and D are completely contin-
uous.and bounded for each δ. Moreover, we have

〈Cv, v〉V ′×V ≥ 0 and 〈Dv, v〉V ′×V ≥ 0 ∀v ∈ V .

Then the operator E = B + C + D is pseudomonotone, bounded and coercive.
Consequently, we deduce that the equation (4.1) has at least one solution uδ ∈ V .

Now, we study the convergence of the solution uδ, as δ → 0 in the following
theorem.

Theorem 4.2. Assume that (2.12), (2.13) and (2.14) hold. Then we have the fol-
lowing strong convergence:

(4.2) lim
δ→0
‖uδ − u‖V = 0.

The proof is carried out in several steps. In the first step, we show the following
lemma.

Lemma 4.3. There exists ū ∈ K such that after passing to a subsequence still
denoted (uδ), we have

(4.3) uδ → ū weakly in V.
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Proof. Take v = uδ in (4.1), we have

(4.4) (Fε (uδ) , ε (uδ))Q + jcδ (uδ, uδ) + jfδ (uδ, uδ) = (f, uδ)V .

As jcδ (uδ, uδ) ≥ 0 and jfδ (uδ, uδ) ≥ 0, it is easy to deduce by (2.12) (b) that

‖uδ‖V ≤ ‖f‖V /m.

Then there exists an element ū ∈ V and a subsequence still denoted uδ such that

uδ → ū weakly on V.

On the other hand from (4.4), we get the inequality∫
Γ3

(
uδν − g

δ

)
+

(uδν − g) da ≤ (f, uδ)V ,

which implies that ∥∥(uδν − g)+

∥∥2

L2(Γ3)

≤ δ ‖f‖2V /m.

Then it follows that

(4.5)
∥∥(ūν − g)+

∥∥
L2(Γ3)

≤ lim inf
δ→0

∥∥(uδν − g)+

∥∥
L2(Γ3)

= 0.

Therefore we conclude by (4.5) that (ūν − g)+ = 0, i-e. ūν ≤ g a.e. on Γ3 and then
ū ∈ K. �

Next, we prove the following lemma.

Lemma 4.4. We have ū = u.

Proof. Let v ∈ K and choose v − uδ in (4.1) yields

(4.6)
(Fε (uδ) , ε (v − uδ))Q + jcδ (uδ, v − uδ)

+jfδ (uδ, v − uδ) ≥ (f, v − uδ)V ∀v ∈ K.

Since we have

jcδ (uδ, v − uδ)

=
∫

Γ3

((
uδν − g

δ

)
+

+ p (uδν)

)
(vν − uδν) da

≤
∫

Γ3
p(uδν) (vν − uδν) da,

then we use (2.14a) and the compact imbedding H
1
2 (Γ3) ↪→ L2 (Γ3) to see that

lim
δ→0

∫
Γ3
p(uδν) (vν − uδν) da = jc (ū, v − ū)

and
lim sup
δ→0

jfδ (uδ, v − uδ) ≤ jf (ū, v)− jf (ū, ū).
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On the other hand as in [12], we have

lim
δ→0

(Fε (uδ) , ε (v − uδ))Q = (Fε(ū), ε (v − ū))Q ,

therefore, passing to the limit in (4.6) as δ → 0, we obtain

(4.7)
(Fε(ū), ε (v − ū))Q + jc (ū, v − ū) + jf (ū, v)

−jf (ū, ū) ≥ (f, v − ū)V ∀v ∈ K.

Now, we choose v = u in (4.7) and v = ū in (2.15) and adding the resulting
inequalities, we obtain by using the assumption (2.12b) that

m ‖ū− u‖2V ≤ jc (ū, u− ū) + jc (u, ū− u)

+jf (ū, u)− jf (ū, ū) + jf (u, ū)− jf (u, u) .

Moreover using (2.14b), we see that

jc (ū, u− ū) + jc (u, ū− u) ≤ 0,

and then we deduce that
m ‖ū− u‖2V ≤

jf (ū, u)− jf (ū, ū) + jf (u, ū)− jf (u, u) .

On the other hand using (2.10) and (2.14b), we have

jf (ū, u)− jf (ū, ū) + jf (u, ū)− jf (u, u) ≤

Lpd
2
Ω ‖ū− u‖

2
V .

Hence we get (
m− Lpd2

Ω ‖µ‖L∞(Γ3)

)
‖ū− u‖2V ≤ 0,

and then as m− Lpd2
Ω ‖µ‖L∞(Γ3) > 0, we obtain

(4.8) ū = u.

Now, to prove (4.2), we use (2.12b) to see that

m ‖uδ − u‖2V ≤

(Fε(uδ), ε(uδ − u))Q − (Fε(u), ε(uδ − u))Q .

Passing to the limit as δ → 0 in the above inequality and taking into account that

lim
δ→0

(
(Fε(uδ), ε(uδ − u))Q − (Fε(u), ε(uδ − u))Q

)
= 0,

we deduce the strong convergence (4.2).

Remark 4.5. We have σδ → σ strongly in Q1. Indeed, we have

‖σδ − σ‖Q1
= ‖σδ − σ‖Q ≤M ‖uδ − u‖V .

Therefore, the strong convergence is a consequence of (4.2).
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Now, we are interesting to study the mechanical interpretation on the contact
surface Γ3. Then we have the theorem below.

Theorem 4.6. We have the following convergences:

(4.9) i) ‖σδν − σν‖
H−

1
2 (Γ3)

→ 0, ii) ‖σδτ − στ‖
(H−

1
2 (Γ3))d

→ 0, as δ → 0.

Proof. The solution u of Problem P1 satisfies the equality:

(4.10) (Fε (u) , ε (v))Q − 〈σν , vν〉 − [στ , vτ ] = (f, v)V ∀v ∈ V.

Using the equalities (4.1) and (4.10) we deduce the following equality:

(4.11) (Fε (uδ)− Fε (u) , ε (v))Q − 〈σδν − σν , vν〉 − [σδτ − στ , vτ ] = 0 ∀v ∈ V.

Now, let v ∈ V such that vτ = 0 and passing to the limit as δ → 0 in (4.11), then
by (4.2) we get (4.9 i). In the same manner take v ∈ V such that vν = 0, with the
same reasoning we get (4.9 ii). �
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PROBLEM TARCIA W ASPEKCIE JEDNOSTRONNYCH WIĘZÓW
I ODKSZTAŁCENIA NORMALNEGO

S t r e s z c z e n i e
W pracy został przedstawiony matematyczny model opisujący stan równowagi nieli-

niowego ciała elastycznego związanego z podłożem poprzez tarcie. Kontakt wymodelowano
z uwzględnieniem jednostronnych więzów i odkształcenia normalnego, związanych z prawem
Coulomba o suchym tarciu. Autorzy przedstawiają wariacyjne sformułowanie problemu
mechanicznego i dowodzą jednoznaczności wyników przy założeniu, że współczynnik tarcia
jest odpowiednio mały. Dowód oparty jest na argumentach wynikających z rozważania
eliptycznych nierówności quasi-wariacyjnych oraz twierdzenia Banacha o punkcie stałym.

Słowa kluczowe: elastyczność, odkształcenie normalne, tarcie, więzy jednostronne
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